在前面几篇关于数据库引擎的讨论里很多的运算函数都返回了scala.Future类型的结果,因为我以为这样就可以很方便的实现了non-blocking效果。无论任何复杂的数据处理操作,只要把它们包在一个Future{...}里扔给系统运算就算完事不理了,马上可以把关注放到编程的其它部分了。在3月17日的深圳scala用户meetup里我做了个关于scala函数式编程的分享,里面我提到现在使用最多的函数组件就是scala.Future了。我想这应该在scala用户群里是个比较普遍的现象:大家都认为这是实现non-blocking最直接的一种方式。不过当我在meetup后回想到scala.Future时突然意识到它是一种即时运算值strict-value,看看下面这个例子:
import scala.concurrent.duration._val fs = Future {println("run now..."); System.currentTimeMillis() }//> run now...//| fs : scala.concurrent.Future[Long] = List()Await.result(fs, 1.second) //> res0: Long = 1465907784714Thread.sleep(1000)Await.result(fs, 1.second) //> res1: Long = 1465907784714
可以看到fs是在Future构建时即时运算的,而且只会运算一次。如果scala Future中包括了能产生副作用的代码,在构建时就会立即产生副作用。所以我们是无法使用scala Future来编写纯函数的,如下:
val progA:Future[A] = for {b <- readFromB_ <- writeToLocationA(a)r <- getResult
} yield r/* location A content updated */... /* later */val progB: Future[B] = for {a <- readFromA_ <- updateLocationAc <- getResult
}...val program: Future[Unit] = for {_ <- progA_ <- progB
} yield()
在上面这个例子里最终的目的是运算program:由progA,progB两个子程序组成。这两个子程序在构建的时候已经开始了运算,随时都会更新localionA产生副作用。想象一下如果progA,progB是埋藏在其它一大堆源代码里的话program的运算结果肯定是无法预测的。换言之用Future来进行函数式组合就是在给自己挖坑嘛,最起码要记住这些Future的构建顺序,而这个要求在大型的协作开发软件工程里基本上是不可能的事。除了无法安全进行函数组合外scala.Future还缺少运算和线程控制的功能,比如:
无法控制什么时候开始运算
无法控制在在哪个线程运算
无法终止开始运算的程序
缺少有效的异常处理机制如fallback,retry等
scalaz和monix函数组件库里都提供了Task来辅助Future实现函数组合。scalaz.Task是基于scalaz.Future的:
sealed abstract class Future[+A] {
...
object Future {case class Now[+A](a: A) extends Future[A]case class Async[+A](onFinish: (A => Trampoline[Unit]) => Unit) extends Future[A]case class Suspend[+A](thunk: () => Future[A]) extends Future[A]case class BindSuspend[A,B](thunk: () => Future[A], f: A => Future[B]) extends Future[B]case class BindAsync[A,B](onFinish: (A => Trampoline[Unit]) => Unit,f: A => Future[B]) extends Future[B]
...
scalaz.Future[A]明显就是个Free Monad。它的结构化表达方式分别有Now,Async,Suspend,BindSuspend,BindAsync。我们可以用这些结构实现flatMap函数,所以Future就是Free Monad:
def flatMap[B](f: A => Future[B]): Future[B] = this match {case Now(a) => Suspend(() => f(a))case Suspend(thunk) => BindSuspend(thunk, f)case Async(listen) => BindAsync(listen, f)case BindSuspend(thunk, g) =>Suspend(() => BindSuspend(thunk, g andThen (_ flatMap f)))case BindAsync(listen, g) =>Suspend(() => BindAsync(listen, g andThen (_ flatMap f)))}
因为free structure类型支持算式/算法关注分离,我们可以用scalaz.Future来描述程序功能而不涉及正真运算。这样,在上面那个例子里如果progA,progB是Task类型的,那么program的构建就是安全的,因为我们最后是用Task.run来真正进行运算产生副作用的。scalaz.Task又在scalaz.Future功能基础上再增加了异常处理等功能。
monix.Task采取了延迟运算的方式来实现算式/算法分离,下面是这个类型的基础构建结构:
/** [[Task]] state describing an immediate synchronous value. */private[eval] final case class Now[A](value: A) extends Task[A] {...}/** [[Task]] state describing an immediate synchronous value. */private[eval] final case class Eval[A](thunk: () => A)extends Task[A]/** Internal state, the result of [[Task.defer]] */private[eval] final case class Suspend[+A](thunk: () => Task[A])extends Task[A]/** Internal [[Task]] state that is the result of applying `flatMap`. */private[eval] final case class FlatMap[A, B](source: Task[A], f: A => Task[B])extends Task[B]/** Internal [[Coeval]] state that is the result of applying `map`. */private[eval] final case class Map[S, +A](source: Task[S], f: S => A, index: Int)extends Task[A] with (S => Task[A]) {def apply(value: S): Task[A] =new Now(f(value))override def toString: String =super[Task].toString}/** Constructs a lazy [[Task]] instance whose result will* be computed asynchronously.** Unsafe to build directly, only use if you know what you're doing.* For building `Async` instances safely, see [[create]].*/private[eval] final case class Async[+A](register: (Context, Callback[A]) => Unit)extends Task[A]
下面的例子里示范了如果用这些结构来构件monix.Task:
object Task extends TaskInstancesLevel1 {/** Returns a new task that, when executed, will emit the result of* the given function, executed asynchronously.** This operation is the equivalent of:* {{{* Task.eval(f).executeAsync* }}}** @param f is the callback to execute asynchronously*/def apply[A](f: => A): Task[A] =eval(f).executeAsync/** Returns a `Task` that on execution is always successful, emitting* the given strict value.*/def now[A](a: A): Task[A] =Task.Now(a)/** Lifts a value into the task context. Alias for [[now]]. */def pure[A](a: A): Task[A] = now(a)/** Returns a task that on execution is always finishing in error* emitting the specified exception.*/def raiseError[A](ex: Throwable): Task[A] =Error(ex)/** Promote a non-strict value representing a Task to a Task of the* same type.*/def defer[A](fa: => Task[A]): Task[A] =Suspend(fa _) ...}source match {case Task.Now(v) => F.pure(v)case Task.Error(e) => F.raiseError(e)case Task.Eval(thunk) => F.delay(thunk())case Task.Suspend(thunk) => F.suspend(to(thunk()))case other => suspend(other)(F)}
这个Suspend结构就是延迟运算的核心。monix.Task是一套新出现的解决方案,借鉴了许多scalaz.Task的概念和方法同时又加入了很多优化、附加的功能,并且github更新也很近期。使用monix.Task应该是一个正确的选择。
首先我们必须解决scala.Future与monix.Task之间的转换:
import monix.eval.Taskimport monix.execution.Scheduler.Implicits.globalfinal class FutureToTask[A](x: => Future[A]) {def asTask: Task[A] = Task.deferFuture[A(x)}final class TaskToFuture[A](x: => Task[A]) {def asFuture: Future[A] = x.runAsync}
下面是一个完整的Task用例:
import scala.concurrent._
import scala.util._
import scala.concurrent.duration._
import monix.eval.Task
import monix.execution._
object MonixTask extends App {
import monix.execution.Scheduler.Implicits.global// Executing a sum, which (due to the semantics of apply)// will happen on another thread. Nothing happens on building// this instance though, this expression is pure, being// just a spec! Task by default has lazy behavior ;-)val task = Task { 1 + 1 }// Tasks get evaluated only on runAsync!// Callback style:val cancelable = task.runOnComplete {case Success(value) =>println(value)case Failure(ex) =>System.out.println(s"ERROR: ${ex.getMessage}")}//=> 2// If we change our mind...
cancelable.cancel()// Or you can convert it into a Futureval future: CancelableFuture[Int] =task.runAsync// Printing the result asynchronouslyfuture.foreach(println)//=> 2
val task = Task.now { println("Effect"); "Hello!" }//=> Effect// task: monix.eval.Task[String] = Delay(Now(Hello!))
}
下面我们就看看各种Task的构建方法:
/* ------ taskNow ----*/val taskNow = Task.now { println("Effect"); "Hello!" }//=> Effect// taskNow: monix.eval.Task[String] = Delay(Now(Hello!))/* --------taskDelay possible another on thread ------*/val taskDelay = Task { println("Effect"); "Hello!" }// taskDelay: monix.eval.Task[String] = Delay(Always(<function0>))
taskDelay.runAsync.foreach(println)//=> Effect//=> Hello!// The evaluation (and thus all contained side effects)// gets triggered on each runAsync:taskDelay.runAsync.foreach(println)//=> Effect//=> Hello!/* --------taskOnce ------- */val taskOnce = Task.evalOnce { println("Effect"); "Hello!" }// taskOnce: monix.eval.Task[String] = EvalOnce(<function0>)
taskOnce.runAsync.foreach(println)//=> Effect//=> Hello!// Result was memoized on the first run!taskOnce.runAsync.foreach(println)//=> Hello!/* --------taskFork ------- */// this guarantees that our task will get executed asynchronously:val task = Task(Task.eval("Hello!")).executeAsync//val task = Task.fork(Task.eval("Hello!"))// The default schedulerimport monix.execution.Scheduler.Implicits.global// Creating a special scheduler meant for I/O
import monix.execution.Schedulerlazy val io = Scheduler.io(name="my-io")//Then we can manage what executes on which:// Override the default Scheduler by fork:val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}"))val forked = source.executeOn(io,true)// val forked = Task.fork(source, io)
source.runAsync//=> Running on thread: ForkJoinPool-1-worker-1
forked.runAsync//=> Running on thread: my-io-4/* --------taskError ------- */import scala.concurrent.TimeoutExceptionval taskError = Task.raiseError[Int](new TimeoutException)// error: monix.eval.Task[Int] =// Delay(Error(java.util.concurrent.TimeoutException))
taskError.runOnComplete(result => println(result))//=> Failure(java.util.concurrent.TimeoutException)
下面是一些控制函数:
final def doOnFinish(f: Option[Throwable] => Task[Unit]): Task[A] =final def doOnCancel(callback: Task[Unit]): Task[A] =final def onCancelRaiseError(e: Throwable): Task[A] =final def onErrorRecoverWith[B >: A](pf: PartialFunction[Throwable, Task[B]]): Task[B] =final def onErrorHandleWith[B >: A](f: Throwable => Task[B]): Task[B] =final def onErrorFallbackTo[B >: A](that: Task[B]): Task[B] =final def restartUntil(p: (A) => Boolean): Task[A] =final def onErrorRestart(maxRetries: Long): Task[A] =final def onErrorRestartIf(p: Throwable => Boolean): Task[A] =final def onErrorRestartLoop[S, B >: A](initial: S)(f: (Throwable, S, S => Task[B]) => Task[B]): Task[B] =final def onErrorHandle[U >: A](f: Throwable => U): Task[U] =final def onErrorRecover[U >: A](pf: PartialFunction[Throwable, U]): Task[U] =
Task是通过asyncRun和runSync来进行异步、同步实际运算的:
def runAsync(implicit s: Scheduler): CancelableFuture[A] =def runAsync(cb: Callback[A])(implicit s: Scheduler): Cancelable =def runAsyncOpt(implicit s: Scheduler, opts: Options): CancelableFuture[A] =def runAsyncOpt(cb: Callback[A])(implicit s: Scheduler, opts: Options): Cancelable =final def runSyncMaybe(implicit s: Scheduler): Either[CancelableFuture[A], A] =final def runSyncMaybeOpt(implicit s: Scheduler, opts: Options): Either[CancelableFuture[A], A] = final def runSyncUnsafe(timeout: Duration)(implicit s: Scheduler, permit: CanBlock): A =final def runSyncUnsafeOpt(timeout: Duration)(implicit s: Scheduler, opts: Options, permit: CanBlock): A =final def runOnComplete(f: Try[A] => Unit)(implicit s: Scheduler): Cancelable =
下面示范了两个通常的Task运算方法:
val task1 = Task {println("sum:"); 1+2}.delayExecution(1 second)println(task1.runSyncUnsafe(2 seconds))task1.runOnComplete {case Success(r) => println(s"result: $r")case Failure(e) => println(e.getMessage)}
下面是本次示范的源代码:
import scala.util._
import scala.concurrent.duration._
import monix.eval.Task
import monix.execution._
object MonixTask extends App {
import monix.execution.Scheduler.Implicits.global// Executing a sum, which (due to the semantics of apply)// will happen on another thread. Nothing happens on building// this instance though, this expression is pure, being// just a spec! Task by default has lazy behavior ;-)val task = Task { 1 + 1 }// Tasks get evaluated only on runAsync!// Callback style:val cancelable = task.runOnComplete {case Success(value) =>println(value)case Failure(ex) =>System.out.println(s"ERROR: ${ex.getMessage}")}//=> 2// If we change our mind...
cancelable.cancel()// Or you can convert it into a Futureval future: CancelableFuture[Int] =task.runAsync// Printing the result asynchronouslyfuture.foreach(println)//=> 2/* ------ taskNow ----*/val taskNow = Task.now { println("Effect"); "Hello!" }//=> Effect// taskNow: monix.eval.Task[String] = Delay(Now(Hello!))/* --------taskDelay possible another on thread ------*/val taskDelay = Task { println("Effect"); "Hello!" }// taskDelay: monix.eval.Task[String] = Delay(Always(<function0>))
taskDelay.runAsync.foreach(println)//=> Effect//=> Hello!// The evaluation (and thus all contained side effects)// gets triggered on each runAsync:taskDelay.runAsync.foreach(println)//=> Effect//=> Hello!/* --------taskOnce ------- */val taskOnce = Task.evalOnce { println("Effect"); "Hello!" }// taskOnce: monix.eval.Task[String] = EvalOnce(<function0>)
taskOnce.runAsync.foreach(println)//=> Effect//=> Hello!// Result was memoized on the first run!taskOnce.runAsync.foreach(println)//=> Hello!/* --------taskFork ------- */// this guarantees that our task will get executed asynchronously:val task = Task(Task.eval("Hello!")).executeAsync//val task = Task.fork(Task.eval("Hello!"))// The default schedulerimport monix.execution.Scheduler.Implicits.global// Creating a special scheduler meant for I/O
import monix.execution.Schedulerlazy val io = Scheduler.io(name="my-io")//Then we can manage what executes on which:// Override the default Scheduler by fork:val source = Task(println(s"Running on thread: ${Thread.currentThread.getName}"))val forked = source.executeOn(io,true)// val forked = Task.fork(source, io)
source.runAsync//=> Running on thread: ForkJoinPool-1-worker-1
forked.runAsync//=> Running on thread: my-io-4/* --------taskError ------- */import scala.concurrent.TimeoutExceptionval taskError = Task.raiseError[Int](new TimeoutException)// error: monix.eval.Task[Int] =// Delay(Error(java.util.concurrent.TimeoutException))
taskError.runOnComplete(result => println(result))//=> Failure(java.util.concurrent.TimeoutException)
val task1 = Task {println("sum:"); 1+2}.delayExecution(1 second)println(task1.runSyncUnsafe(2 seconds))task1.runOnComplete {case Success(r) => println(s"result: $r")case Failure(e) => println(e.getMessage)}}