全国政府网站建设的规范/武汉网络营销公司排名
第五章 Logistic回归
回归:对一些数据点,算法训练出直线参数,得到最佳拟合直线,能够对这些点很好的拟合。
训练分类器主要是寻找最佳拟合参数,故为最优化算法。
5.1 基于Logistic回归和sigmoid函数的分类
实现Logistic回归分类器:在每个特征上都乘以一个回归系数,然后把所有的结果值相加,总和带入sigmoid函数,其结果大于0.5分为第0类,结果小于0.5分为第0类。
sigmoid函数公式:
Figure 5-1: sigmoid函数公式
Figure 5-2: sigmoid曲线
sigmoid函数具有很好的性质,如其导数可以用其本身表示等等。
5.2 基于最优化方法的最佳回归系数确定
sigmoid函数输入z:
其可以写成z=w.T*x,向量x为分类器的输入数据, w为训练器寻找的最佳参数。
梯度上升法:
思想:要找到某函数的最大值,最好的方法是沿着该函数的梯度方向探寻。
函数f(x,y)的梯度:
沿x的方向移动
,沿y的方向移动
,最后能够到达最优点,但是f(x,y)在待计算点需要有定义并且可微。
梯度算子总是指向函数值增长最快的方向。移动方向为梯度方向,移动量大小需要乘以一个参数,称之为步长。参数迭代公式为:
公式可一直执行,直到某个条件停止为止。如迭代次数或者算法达到某个可以允许的误差范围。
训练算法:使用梯度上升找到最佳参数
梯度上升法伪代码:
数据点:
算法:
def loadDataSet():dataMat = []labelMat = []fr = open("testSet.txt")for line in fr.readlines():lineArr = line.strip().split("\t")dataMat.append([1.0, float(lineArr[0]), float(lineArr[1])]) #对应三个参数,第一个对应着常熟labelMat.append(int(lineArr[2]))return dataMat, labelMatdef sigmoid(inX):return 1.0/(1+exp(-inX))def gradAscent(dataMatIn, classLabels):'''Logistic回归梯度上升优化算法'''dataMatrix = mat(dataMatIn) #100行3列labelMat = mat(classLabels).transpose() #transpose()将1行100列的矩阵转为100行1列mat(classLabels).T也可破m,n = shape(dataMatrix) #m=100,n=3alpha = 0.001maxCycles = 500weights = ones((n,1)) #100行1列for k in range(maxCycles):h = sigmoid(dataMatrix*weights) #dataMatrix*weights,100×3和3×1的矩阵相乘,得到100×1的矩阵error = (labelMat - h)weights = weights + alpha*dataMatrix.transpose()*errorreturn weights dataMat, labelMat = loadDataSet() weights = gradAscent(dataMat, labelMat) print weights
Figure5-4: 算法参数
分析数据:画出决策边界
上一步确定了回归系数,确定了不同类别数据之间的分割线。这一步画出分割线:
def plotBestFit(weights):dataMat, labelMat = loadDataSet()dataArr = array(dataMat) #将每个数据点的x,y坐标存为矩阵的形式n = shape(dataArr)[0] #取其行数,也即数据点的个数#======画数据点xcord1 = []ycord1 = [] xcord2 = []ycord2 = []for i in range(n):if int(labelMat[i]) == 1: #若是正例,存到(x1,y1)中xcord1.append(dataArr[i,1])ycord1.append(dataArr[i,2])else:xcord2.append(dataArr[i,1])ycord2.append(dataArr[i,2])fig = plt.figure()ax = fig.add_subplot(111)ax.scatter(xcord1,ycord1,s=30,c="red",marker = "s")ax.scatter(xcord2,ycord2,s=30,c="green")#============x = arange(-3.0,3.0,0.1) #x为numpy.arange格式,并且以0.1为步长从-3.0到3.0切分。#拟合曲线为0 = w0*x0+w1*x1+w2*x2, 故x2 = (-w0*x0-w1*x1)/w2, x0为1,x1为x, x2为y,故有y = (-weights[0] - weights[1]*x)/weights[2] #x为array格式,weights为matrix格式,故需要调用getA()方法,其将matrix()格式矩阵转为array()格式ax.plot(x,y)plt.xlabel("X1")plt.ylabel("X2")plt.show() dataMat, labelMat = loadDataSet() weights = gradAscent(dataMat, labelMat) #getA()方法,其将matrix()格式矩阵转为array()格式,type(weights),type(weights.getA())可观察到。 plotBestFit(weights.getA())
Figure 5-5: 分割线
训练算法:随机梯度上升
梯度上升算法中,每次更新回归系数需要遍历整个数据集。数据量若是大了,计算复杂度较高。
改进方法:一次仅用一个样本点更新回归系数,这便是随机梯度上升算法。
伪代码:
代码:
def stocGradAscent0(dataMatrix, classLabels):'''随机梯度上升算法'''m,n = shape(dataMatrix)alpha = 0.01weights = ones(n)for i in range(m):h = sigmoid(sum(dataMatrix[i]*weights)) #此处h为具体数值error = classLabels[i] - h #error也为具体数值weights = weights + alpha*error*dataMatrix[i] #每次对一个样本进行处理,更新权值return weights dataArr, labelMat = loadDataSet() weights = stocGradAscent0(array(dataArr), labelMat) plotBestFit(weights)
Figure 5-6: 随机梯度上升算法分割线
结果显示其效果还不如梯度上升算法,不过不一样,梯度上升算法,500次迭代每次都用上了所有数据,而随机梯度上升算法总共也只用了500次。需要对其进行改进:
def stocGradAscent1(dataMatrix, classLabels, numIter=150):'''改进的随机梯度上升算法,收敛得更快'''m,n = shape(dataMatrix)weights = ones(n)for j in range(numIter):dataIndex = range(m)for i in range(m):alpha = 4/(1.0+i+j)+0.0001 #alpha迭代次数不断变小,1.非严格下降,2.不会到0#随机选取样本更新系数weights,每次随机从列表中选取一个值,用过后删除它再进行下一次迭代 randIndex = int(random.uniform(0, len(dataIndex)))#每次迭代改变dataIndex,而m是不变的,故不用unifor(0, m)h = sigmoid(sum(dataMatrix[randIndex]*weights))error = classLabels[randIndex] - hweights = weights + alpha*error*dataMatrix[randIndex]del(dataIndex[randIndex])return weightsdataArr, labelMat = loadDataSet() weights = stocGradAscent1(array(dataArr), labelMat) plotBestFit(weights)
Figure 5-7: 改进的随机梯度上升算法分割线
5.3 示例:从疝气病症预测病马的死亡率
准备数据:处理数据中的缺失值
可选做法:
- 使用可用特征的均值来填补缺失值
- 使用特殊值来填补缺失值,如-1
- 忽略有缺失值的样本
- 使用相似样本的均值添补缺失值
- 使用另外的机器学习算法预测缺失值
数据挖掘软件clementine几乎可以做以上数据预处理的工作。可破有问题的数据。
数据:
Figure 5-8: train data
Figure 5-9: test data
测试算法:用Logistic回归进行分类
def colicTest():frTrain = open("horseColicTraining.txt")frTest = open("horseColicTest.txt")#==========训练数据准备trainingSet = []trainingLabels = []for line in frTrain.readlines():currLine = line.strip().split("\t")lineArr = []for i in range(21):lineArr.append(float(currLine[i]))trainingSet.append(lineArr)trainingLabels.append(float(currLine[21]))#==========trainWeights = stocGradAscent1(array(trainingSet), trainingLabels, 500) #进行500次迭代,计算权重errorCount = 0numTestVec = 0.0#========准备测试集并进行测试计算错误率for line in frTest.readlines():numTestVec +=1.0currLine = line.strip().split("\t")lineArr = []for i in range(21):lineArr.append(float(currLine[i]))if int(classifyVector(array(lineArr), trainWeights)) != int(currLine[21]):errorCount +=1errorRate = (float(errorCount)/numTestVec)#=======print "the error rate of this test is: %f" % errorRatereturn errorRatedef multiTest(): #多次测试numTests = 10errorSum = 0.0for k in range(numTests):errorSum += colicTest()print "after %s iterations the average error rate is: %f " % (numTests, errorSum/float(numTests))
5.4 小结
Logistic回归:
优点: 计算代价不高,易于理解和实现。
缺点: 容易欠拟合,分类精度可能不高。
适用数据类型:数值型和标称型数据。