BM求线性递推是最近了解到的一个黑科技
如果一个数列、其能够通过线性递推而来
例如使用矩阵快速幂优化的 DP 大概都可以丢进去
则使用 BM 即可得到任意 N 项的数列元素
参考博客 : 暂时没有、 找到了一个、希望你能看懂吧、click here
以下是 2018 焦作网络赛 L 题 AC 代码、可做模板


#include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <string> #include <map> #include <set> #include <cassert> #include<bits/stdc++.h> using namespace std; #define rep(i,a,n) for (int i=a;i<n;i++) #define per(i,a,n) for (int i=n-1;i>=a;i--) #define pb push_back #define mp make_pair #define all(x) (x).begin(),(x).end() #define fi first #define se second #define SZ(x) ((int)(x).size()) typedef vector<int> VI; typedef long long ll; typedef pair<int,int> PII; const ll mod=1000000007; ll powmod(ll a,ll b) {ll res=1;a%=mod; assert(b>=0); for(;b;b>>=1){if(b&1)res=res*a%mod;a=a*a%mod;}return res;} // head ll n; namespace linear_seq {const int N=10010;ll res[N],base[N],_c[N],_md[N];vector<int> Md;void mul(ll *a,ll *b,int k) {rep(i,0,k+k) _c[i]=0;rep(i,0,k) if (a[i]) rep(j,0,k) _c[i+j]=(_c[i+j]+a[i]*b[j])%mod;for (int i=k+k-1;i>=k;i--) if (_c[i])rep(j,0,SZ(Md)) _c[i-k+Md[j]]=(_c[i-k+Md[j]]-_c[i]*_md[Md[j]])%mod;rep(i,0,k) a[i]=_c[i];}int solve(ll n,VI a,VI b) { // a 系数 b 初值 b[n+1]=a[0]*b[n]+...ll ans=0,pnt=0;int k=SZ(a);assert(SZ(a)==SZ(b));rep(i,0,k) _md[k-1-i]=-a[i];_md[k]=1;Md.clear();rep(i,0,k) if (_md[i]!=0) Md.push_back(i);rep(i,0,k) res[i]=base[i]=0;res[0]=1;while ((1ll<<pnt)<=n) pnt++;for (int p=pnt;p>=0;p--) {mul(res,res,k);if ((n>>p)&1) {for (int i=k-1;i>=0;i--) res[i+1]=res[i];res[0]=0;rep(j,0,SZ(Md)) res[Md[j]]=(res[Md[j]]-res[k]*_md[Md[j]])%mod;}}rep(i,0,k) ans=(ans+res[i]*b[i])%mod;if (ans<0) ans+=mod;return ans;}VI BM(VI s) {VI C(1,1),B(1,1);int L=0,m=1,b=1;rep(n,0,SZ(s)) {ll d=0;rep(i,0,L+1) d=(d+(ll)C[i]*s[n-i])%mod;if (d==0) ++m;else if (2*L<=n) {VI T=C;ll c=mod-d*powmod(b,mod-2)%mod;while (SZ(C)<SZ(B)+m) C.pb(0);rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;L=n+1-L; B=T; b=d; m=1;} else {ll c=mod-d*powmod(b,mod-2)%mod;while (SZ(C)<SZ(B)+m) C.pb(0);rep(i,0,SZ(B)) C[i+m]=(C[i+m]+c*B[i])%mod;++m;}}return C;}int gao(VI a,ll n) {VI c=BM(a);c.erase(c.begin());rep(i,0,SZ(c)) c[i]=(mod-c[i])%mod;return solve(n,c,VI(a.begin(),a.begin()+SZ(c)));} };int main() {/*push_back 进去前 8~10 项左右、最后调用 gao 得第 n 项*/vector<int>v;v.push_back(3);v.push_back(9);v.push_back(20);v.push_back(46);v.push_back(106);v.push_back(244);v.push_back(560);v.push_back(1286);v.push_back(2956);v.push_back(6794);int nCase;scanf("%d", &nCase);while(nCase--){scanf("%lld", &n);printf("%lld\n",1LL * linear_seq::gao(v,n-1) % mod);} }