当前位置: 首页 > news >正文

昆山做网站找哪家好/网站出租三级域名费用

昆山做网站找哪家好,网站出租三级域名费用,个人主页排版,东莞哪家做网站好多元微分学 概念 二重极限 若对∀ϵ>0,∃δ>0,当0<(x−x0)2(y−y0)2<δ时&#xff0c;恒有∣f(x,y)−A∣<ϵ,则称A是f(x,y)在(x0,y0)点的极限[注](1){一元极限中x→x0有且仅有两种方式二元极限中有无穷任意多种方式(2)若有两条不同路径&#xff08;如直线ykx&a…

多元微分学

在这里插入图片描述

概念

二重极限

若对∀ϵ&gt;0,∃δ&gt;0,当0&lt;(x−x0)2+(y−y0)2&lt;δ时,恒有∣f(x,y)−A∣&lt;ϵ,则称A是f(x,y)在(x0,y0)点的极限[注](1){一元极限中x→x0有且仅有两种方式二元极限中有无穷任意多种方式(2)若有两条不同路径(如直线y=kx,抛物线x=y2)使极限lim⁡x→0,y→0f(x,y)值不相等或某一条路径使极限lim⁡x→0,y→0f(x,y)值不存在,则说明二重极限lim⁡x→0,y→0f(x,y)不存在(3)主要方法:化成一元极限、等价代换、无穷小乘有界、夹逼准则(4)二重极限保持了一元极限的各种性质,如唯一性、局部有界性、局部保号性及运算性质(5)所求极限得二元函数f(x,y)如果使齐次有理式函数,即分子、分母分别均是齐次有理函数,考察(x,y)→(0,0)时得极限,可用下述命题:设f(x,y)=P(x,y)Q(x,y)=m次n次,其中分子分母是互质多项式,则1.当m&gt;n时,若方程Q(1,y)=0与Q(x,1)=0均无实根,则lim⁡x→0,y→0f(x,y)=0;若方程Q(1,y)=0与Q(x,1)=0有实根,则lim⁡x→0,y→0f(x,y)不存在2.当m≤n时,lim⁡x→0,y→0f(x,y)不存在\begin{aligned} &amp;若对\forall\epsilon&gt;0,\exists\delta&gt;0,当0&lt;\sqrt{(x-x_0)^2+(y-y_0)^2}&lt;\delta时,\\ &amp;恒有|f(x,y)-A|&lt;\epsilon,则称A是f(x,y)在(x_0,y_0)点的极限\\ [注](1)&amp;\begin{cases}一元极限中x\to x_0有且仅有两种方式\\二元极限中有无穷任意多种方式\end{cases}\\ (2)&amp;若有两条不同路径(如直线y=kx,抛物线x=y^2)使极限\lim_{{x\to0,y\to0}}f(x,y)值不相等\\ &amp;或某一条路径使极限\lim_{{x\to0,y\to0}}f(x,y)值不存在,则说明二重极限\lim_{{x\to0,y\to0}}f(x,y)不存在\\ (3)&amp;主要方法:化成一元极限、等价代换、无穷小乘有界、夹逼准则\\ (4)&amp;二重极限保持了一元极限的各种性质,如唯一性、局部有界性、局部保号性及运算性质\\ (5)&amp;所求极限得二元函数f(x,y)如果使齐次有理式函数,即分子、分母分别均是齐次有理函数,\\ &amp;考察(x,y)\to(0,0)时得极限,可用下述命题:\\ &amp;设f(x,y)=\frac{P(x,y)}{Q(x,y)}=\frac{m次}{n次},其中分子分母是互质多项式,则\\ &amp;1.当m&gt;n时,若方程Q(1,y)=0与Q(x,1)=0均无实根,则\lim_{{x\to0,y\to0}}f(x,y)=0;\\ &amp;若方程Q(1,y)=0与Q(x,1)=0有实根,则\lim_{{x\to0,y\to0}}f(x,y)不存在\\ &amp;2.当m\leq n时,\lim_{{x\to0,y\to0}}f(x,y)不存在\\ \end{aligned} [](1)(2)(3)(4)(5)ϵ>0,δ>0,0<(xx0)2+(yy0)2<δf(x,y)A<ϵ,Af(x,y)(x0,y0){xx0线y=kx线x=y2使x0,y0limf(x,y)使x0,y0limf(x,y)x0,y0limf(x,y)f(x,y)使(x,y)(0,0)f(x,y)=Q(x,y)P(x,y)=nm,1.m>nQ(1,y)=0Q(x,1)=0x0,y0limf(x,y)=0;Q(1,y)=0Q(x,1)=0x0,y0limf(x,y)2.mnx0,y0limf(x,y)

[注3相关]1.lim⁡x→0,y→0x2+y2−sin⁡x2+y2(x2+y2)3令x2+y2=t,则I=lim⁡t→0t−sin⁡tt3=162.lim⁡x→0,y→0sin⁡xyy=lim⁡x→0,y→0xyy=lim⁡x→0,y→0x=03.lim⁡x→0,y→0xy2x2+y2=lim⁡x→0,y→0x⋅y2x2+y2=0[注5相关]1.lim⁡x→0,y→0x3+y3x2+y2m=3&gt;n=2,且Q(1,y)=1+y2=0和Q(x,1)=x2+1=0无实根&ThickSpace;⟹&ThickSpace;I=02.lim⁡x→0,y→0xyx+ym=2&gt;n=1,且Q(1,y)=1+y=0有实根&ThickSpace;⟹&ThickSpace;不∃3.lim⁡x→0,y→0x+yx−ym=1=n=1&ThickSpace;⟹&ThickSpace;不∃4.lim⁡x→0,y→0x2+y2x3+y3m=2&lt;n=3&ThickSpace;⟹&ThickSpace;不∃[注2相关]证明lim⁡x→0,y→0x2yx4+y2不存在Iy=kb→=lim⁡x→0kx3x4+k2x2=lim⁡x→0kxx2+k2=0Iy=x2→lim⁡x→0x4x4+x4=12∴二元极限不存在\begin{aligned} &amp;\color{blue}[注3相关]\\ 1.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{\sqrt{x^2+y^2}-\sin\sqrt{x^2+y^2}}{(\sqrt{x^2+y^2})^3}\\ &amp;令\sqrt{x^2+y^2}=t,则I=\lim_{t\to0}\frac{t-\sin t}{t^3}=\frac16\\ 2.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{\sin xy}{y}\\ &amp;=\lim_{{x\to0,y\to0}}\frac{xy}{y}=\lim_{{x\to0,y\to0}}x=0\\ 3.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{xy^2}{x^2+y^2}=\lim_{{x\to0,y\to0}}x\cdot\frac{y^2}{x^2+y^2}=0\\ &amp;\color{blue}[注5相关]\\ 1.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{x^3+y^3}{x^2+y^2}\\ &amp; m=3&gt;n=2,且Q(1,y)=1+y^2=0和Q(x,1)=x^2+1=0 无实根\implies I=0\\ 2.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{xy}{x+y}\\ &amp; m=2&gt;n=1,且Q(1,y)=1+y=0有实根\implies 不\exists\\ 3.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{x+y}{x-y}\\ &amp; m=1=n=1\implies 不\exists\\ 4.&amp;\color{maroon}\lim_{{x\to0,y\to0}}\frac{x^2+y^2}{x^3+y^3}\\ &amp; m=2&lt;n=3 \implies 不\exists\\ &amp;\color{blue}[注2相关]\\ &amp;\color{maroon}证明\lim_{{x\to0,y\to0}}\frac{x^2y}{x^4+y^2}不存在\\ &amp;I\underrightarrow{y=kb}=\lim_{x\to0}\frac{kx^3}{x^4+k^2x^2}=\lim_{x\to0}\frac{kx}{x^2+k^2}=0\\ &amp;I\underrightarrow{y=x^2}\lim_{x\to0}\frac{x^4}{x^4+x^4}=\frac12\\ &amp;\therefore 二元极限不存在\\ \end{aligned} 1.2.3.1.2.3.4.[3]x0,y0lim(x2+y2)3x2+y2sinx2+y2x2+y2=t,I=t0limt3tsint=61x0,y0limysinxy=x0,y0limyxy=x0,y0limx=0x0,y0limx2+y2xy2=x0,y0limxx2+y2y2=0[5]x0,y0limx2+y2x3+y3m=3>n=2,Q(1,y)=1+y2=0Q(x,1)=x2+1=0I=0x0,y0limx+yxym=2>n=1,Q(1,y)=1+y=0x0,y0limxyx+ym=1=n=1x0,y0limx3+y3x2+y2m=2<n=3[2]x0,y0limx4+y2x2yIy=kb=x0limx4+k2x2kx3=x0limx2+k2kx=0Iy=x2x0limx4+x4x4=21

连续

若lim⁡x→0,y→0f(x,y)=f(x0,y0),则称f(x,y)在点(x0,y0)处连续[注]不讨论间断点\begin{aligned} &amp;若\lim_{{x\to0,y\to0}}f(x,y)=f(x_0,y_0),则称f(x,y)在点(x_0,y_0)处连续\\ &amp;[注]不讨论间断点 \end{aligned} x0,y0limf(x,y)=f(x0,y0),f(x,y)(x0,y0)[]

偏导数

z=f(x,y)在(x0,y0)处的偏导数fx′(x0,y0)=lim⁡Δx→0f(x0+Δx,y0)−f(x0,y0)Δx=lim⁡x→x0f(x,y0)−f(x0,y0)x−x0fy′(x0,y0)=lim⁡Δy→0f(x0,y0+Δy)−f(x0,y0)Δy=lim⁡y→y0f(x0,y)−f(x0,y0)y−y01.偏导数实际上就是对应一元函数得导数,如:fx′(x0,y0)=φ′(x)∣x=x0=[f(x,y0)]′∣x→x0fy′(x0,y0)=φ′(y)∣y=y0=[f(x0,y)]′∣y→y02.求f(x,y)的偏导数只需先把其中一个变量视为常数即可,如求fx′(x,y)时,把f(x,y)中的y先视为常数,y偏导同理。\begin{aligned} &amp;z=f(x,y)在(x_0,y_0)处的偏导数\\ &amp;f&#x27;_x(x_0,y_0)=\lim_{\Delta x\to0}\frac{f(x_0+\Delta x,y_0)-f(x_0,y_0)}{\Delta x}=\lim_{x\to x_0}\frac{f(x,y_0)-f(x_0,y_0)}{x-x_0}\\ &amp;f&#x27;_y(x_0,y_0)=\lim_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}=\lim_{y\to y_0}\frac{f(x_0,y)-f(x_0,y_0)}{y-y_0}\\ &amp;1.偏导数实际上就是对应一元函数得导数,如:\\ &amp;f_x&#x27;(x_0,y_0)=\varphi&#x27;(x)|_{x=x_0}=[f(x,y_0)]&#x27;|_{x\to x_0}\\ &amp;f_y&#x27;(x_0,y_0)=\varphi&#x27;(y)|_{y=y_0}=[f(x_0,y)]&#x27;|_{y\to y_0}\\ &amp;2.求f(x,y)的偏导数只需先把其中一个变量视为常数即可,\\ &amp;如求f_x&#x27;(x,y)时,把f(x,y)中的y先视为常数,y偏导同理。 \end{aligned} z=f(x,y)(x0,y0)fx(x0,y0)=Δx0limΔxf(x0+Δx,y0)f(x0,y0)=xx0limxx0f(x,y0)f(x0,y0)fy(x0,y0)=Δy0limΔyf(x0,y0+Δy)f(x0,y0)=yy0limyy0f(x0,y)f(x0,y0)1.:fx(x0,y0)=φ(x)x=x0=[f(x,y0)]xx0fy(x0,y0)=φ(y)y=y0=[f(x0,y)]yy02.f(x,y)fx(x,y)f(x,y)yy

1.设f(x,y)=x2+(y−1)arcsin⁡yx,则∂f∂x∣(2,1)=f(x,1)=x2&ThickSpace;⟹&ThickSpace;∂f∂x∣(2,1)=(x2)′∣x=2=42.设f(x,y)=exx−y,则‾fx′=ex⋅(x−y)−ex⋅(1−0)(x−y)2fy′=0−ex⋅(0−1)(x−y)2&ThickSpace;⟹&ThickSpace;fx′+fy′=exx−y=f3.设f(x,y)=ex+y[x13(y−1)13+y13(x−1)23],则在点(0,1)处的两个偏导数fx′(0,1)=‾,fy′(0,1)=‾令y=1&ThickSpace;⟹&ThickSpace;f(x,1)=ex+1(x−1)23&ThickSpace;⟹&ThickSpace;fx′(x,1)=ex+1(x−1)23+ex+123(x−1)−13令x=0&ThickSpace;⟹&ThickSpace;fx′(0,1)=e+e⋅(−23)=e3fy′(x0,y0)=lim⁡Δy→0f(x0,y0+Δy)−f(x0,y0)Δy令x=0&ThickSpace;⟹&ThickSpace;f(0,y)=ey⋅y13&ThickSpace;⟹&ThickSpace;fy′(0,y)=ey⋅y13+ey⋅13y−23令y=1,fy′(0,1)=e+e⋅13=43e\begin{aligned} 1.&amp;\color{maroon}设f(x,y)=x^2+(y-1)\arcsin\sqrt{\frac yx},则\frac{\partial f}{\partial x}|_{(2,1)}=\\ &amp;f(x,1)=x^2\implies \frac{\partial f}{\partial x}|_{(2,1)}=(x^2)&#x27;|_{x=2}=4\\ 2.&amp;\color{maroon}设f(x,y)=\frac{e^x}{x-y},则\underline{\quad}\\ &amp;f&#x27;_x=\frac{e^x\cdot(x-y)-e^x\cdot(1-0)}{(x-y)^2}\\ &amp;f&#x27;_y=\frac{0-e^x\cdot(0-1)}{(x-y)^2}\\ &amp;\implies f&#x27;_x+f&#x27;_y=\frac{e^x}{x-y}=f\\ 3.&amp;\color{maroon}设f(x,y)=e^{x+y}[x^{\frac13}(y-1)^{\frac13}+y^{\frac13}(x-1)^{\frac23}],则在点(0,1)处的两个偏导数f_x&#x27;(0,1)=\underline{\quad},f_y&#x27;(0,1)=\underline{\quad}\\ &amp;令y=1\implies f(x,1)=e^{x+1}(x-1)^{\frac23}\\ &amp;\implies f_x&#x27;(x,1)=e^{x+1}(x-1)^\frac23+e^{x+1}\frac23(x-1)^{-\frac13}\\ &amp;令x=0\implies f_x&#x27;(0,1)=e+e\cdot(-\frac23)=\frac e3\\ &amp;f_y&#x27;(x_0,y_0)=\lim_{\Delta y\to0}\frac{f(x_0,y_0+\Delta y)-f(x_0,y_0)}{\Delta y}\\ &amp;令x=0\implies f(0,y)=e^y\cdot y^{\frac13}\implies f_y&#x27;(0,y)=e^y\cdot y^{\frac13}+e^y\cdot\frac13y^{-\frac23}\\ &amp;令y=1,f_y&#x27;(0,1)=e+e\cdot\frac13=\frac43e\\ \end{aligned} 1.2.3.f(x,y)=x2+(y1)arcsinxy,xf(2,1)=f(x,1)=x2xf(2,1)=(x2)x=2=4f(x,y)=xyex,fx=(xy)2ex(xy)ex(10)fy=(xy)20ex(01)fx+fy=xyex=ff(x,y)=ex+y[x31(y1)31+y31(x1)32],(0,1)fx(0,1)=,fy(0,1)=y=1f(x,1)=ex+1(x1)32fx(x,1)=ex+1(x1)32+ex+132(x1)31x=0fx(0,1)=e+e(32)=3efy(x0,y0)=Δy0limΔyf(x0,y0+Δy)f(x0,y0)x=0f(0,y)=eyy31fy(0,y)=eyy31+ey31y32y=1,fy(0,1)=e+e31=34e

可微

判定二元函数f(x,y)在点(x0,y0)是否可微的方法先求fx′(x0,y0)与fy′(x0,y0),若有一个不存在,则直接不可微;若都存在,则检查lim⁡x→0,y→0f(x,y)−f(x0,y0)−fx′(x0,y0)(x−x0)−fy′(x0,y0)(y−y0)(x−x0)2+(y−y0)2=0?若等于0,则可微,若不等于0或不存在,则不可微。\begin{aligned} &amp;判定二元函数f(x,y)在点(x_0,y_0)是否可微的方法\\ &amp;先求f_x&#x27;(x_0,y_0)与f_y&#x27;(x_0,y_0),若有一个不存在,则直接不可微;\\ &amp;若都存在,则检查\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(x_0,y_0)-f_x&#x27;(x_0,y_0)(x-x_0)-f_y&#x27;(x_0,y_0)(y-y_0)}{\sqrt{(x-x_0)^2+(y-y_0)^2}}=0?\\ &amp;若等于0,则可微,若不等于0或不存在,则不可微。\\ \end{aligned} f(x,y)(x0,y0)fx(x0,y0)fy(x0,y0),x0,y0lim(xx0)2+yy0)2f(x,y)f(x0,y0)fx(x0,y0)(xx0)fy(x0,y0)(yy0)=0?00

1.讨论f(x,y)={x2yx2+y2,(x,y)≠(0,0)0,(x,y)=(0,0)在(0,0)点可微性fx′(0,0)=lim⁡x→0f(x,0)−f(0,0)x=lim⁡x→00−0x=0(∃)同理fy′(0,0)=0(∃)lim⁡x→0,y→0f(x,y)−f(0,0)−0x2+y2=lim⁡x→0,y→0x2y(x2+y2)3/2(m=3=n=3)故f(x,y)在(0,0)处不可微\begin{aligned} 1.&amp;\color{maroon}讨论f(x,y)=\begin{cases}\frac{x^2y}{x^2+y^2},(x,y)\neq(0,0)\\0,(x,y)=(0,0)\end{cases}在(0,0)点可微性\\ &amp;f_x&#x27;(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}x=\lim_{x\to0}\frac{0-0}{x}=0(\exists)\\ &amp;同理f_y&#x27;(0,0)=0(\exists)\\ &amp;\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^2+y^2}}=\lim_{{x\to0,y\to0}}\frac{x^2y}{(x^2+y^2)^{3/2}}\\ &amp;(m=3=n=3)故f(x,y)在(0,0)处不可微\\ \end{aligned} 1.f(x,y)={x2+y2x2y,(x,y)̸=(0,0)0,(x,y)=(0,0)(0,0)fx(0,0)=x0limxf(x,0)f(0,0)=x0limx00=0()fy(0,0)=0()x0,y0limx2+y2f(x,y)f(0,0)0=x0,y0lim(x2+y2)3/2x2y(m=3=n=3)f(x,y)(0,0)

概念之间的关系

两个偏导数连续→二元函数可微→二元函数连续→极限存在 且 二元函数可偏导

1.设f(x,y)具有一阶连续偏导数,且对任意的(x,y)都有∂f(x.y)∂x&gt;0,∂f(x.y)∂y&lt;0,则A.f(0,0)&gt;f(1,1)B.f(0,0)&lt;f(1,1)C.f(0,1)&gt;f(1,0)D.f(0,1)&lt;f(1,0)由题意,得对x单调递增;对y单调递减画图可得D2.设f(x,y)=ex2+y4,则f(x,0)=e∣x∣在x=0处不可导&ThickSpace;⟹&ThickSpace;∂f∂x∣(0,0)不∃f(0,y)=ey2在y=0处可导&ThickSpace;⟹&ThickSpace;∂f∂y∣(0,0)∃3.设f(x,y)={x2y2x2+y2,(x,y)≠(0,0)0,(x,y)=(0,0),讨论f(x,y)在点(0,0)的连续性、可导性及可微性lim⁡x→0,y→0f(x,y)=lim⁡x→0,y→0x2y2x2+y2=0=f(0,0),故连续fx′(0,0)=lim⁡x→0f(x,0)−f(0,0)x=lim⁡x→00−0x=0∃由对称性可知,fy′(0,0)=0∃lim⁡x→0,y→0f(x,y)−f(0,0)−0x+y2=lim⁡x→0,y→0x2y2(x2+y2)3/2=0&ThickSpace;⟹&ThickSpace;f(x,y)在(0,0)处可微4.已知(axy3−y2cos⁡x)dx+(1+bysin⁡x+3x2y2)dy为某一函数u(x,y)的全微分,则∂u∂x=axy3−y2cos⁡x∂u∂y=1+bysin⁡x+3x2y2&ThickSpace;⟹&ThickSpace;∂2u∂x∂y=3axy2−2ycos⁡x&ThickSpace;⟹&ThickSpace;∂2u∂y∂x=bycos⁡x+6xy2&ThickSpace;⟹&ThickSpace;a=2,b=−2\begin{aligned} 1.&amp;\color{maroon}设f(x,y)具有一阶连续偏导数,且对任意的(x,y)都有\frac{\partial f(x.y)}{\partial x}&gt;0,\frac{\partial f(x.y)}{\partial y}&lt;0,则\\ &amp;A.f(0,0)&gt;f(1,1)\quad B.f(0,0)&lt;f(1,1)\quad C.f(0,1)&gt;f(1,0)\quad D.f(0,1)&lt;f(1,0)\\ &amp;由题意,得对x单调递增;对y单调递减\\ &amp;画图可得D\\ 2.&amp;\color{maroon}设f(x,y)=e^{\sqrt{x^2+y^4}},则\\ &amp;f(x,0)=e^{|x|}在x=0处不可导\implies\frac{\partial f}{\partial x}|_{(0,0)}不\exists\\ &amp;f(0,y)=e^{y^2}在y=0处可导\implies \frac{\partial f}{\partial y}|_{(0,0)}\exists\\ 3.&amp;\color{maroon}设f(x,y)=\begin{cases}\frac{x^2y^2}{x^2+y^2},(x,y)\neq(0,0)\\0,(x,y)=(0,0)\end{cases},讨论f(x,y)在点(0,0)的连续性、可导性及可微性\\ &amp;\lim_{{x\to0,y\to0}}f(x,y)=\lim_{{x\to0,y\to0}}\frac{x^2y^2}{x^2+y^2}=0=f(0,0),故连续\\ &amp;f_x&#x27;(0,0)=\lim_{x\to0}\frac{f(x,0)-f(0,0)}x=\lim_{x\to0}\frac{0-0}{x}=0\quad\exists\\ &amp;由对称性可知,f_y&#x27;(0,0)=0\quad\exists\\ &amp;\lim_{{x\to0,y\to0}}\frac{f(x,y)-f(0,0)-0}{\sqrt{x^+y^2}}=\lim_{{x\to0,y\to0}}\frac{x^2y^2}{(x^2+y^2)^{3/2}}=0\\ &amp;\implies f(x,y)在(0,0)处可微\\ 4.&amp;\color{maroon}已知(axy^3-y^2\cos x)dx+(1+by\sin x+3x^2y^2)dy为某一函数u(x,y)的全微分,则\\ &amp;\frac{\partial u}{\partial x}=axy^3-y^2\cos x\\ &amp;\frac{\partial u}{\partial y}=1+by\sin x+3x^2y^2\\ &amp;\implies \frac{\partial^2u}{\partial x\partial y}=3axy^2-2y\cos x\\ &amp;\implies \frac{\partial^2u}{\partial y\partial x}=by\cos x+6xy^2\\ &amp;\implies a=2,b=-2\\ \end{aligned} 1.2.3.4.f(x,y)(x,y)xf(x.y)>0,yf(x.y)<0,A.f(0,0)>f(1,1)B.f(0,0)<f(1,1)C.f(0,1)>f(1,0)D.f(0,1)<f(1,0)xyDf(x,y)=ex2+y4,f(x,0)=exx=0xf(0,0)f(0,y)=ey2y=0yf(0,0)f(x,y)={x2+y2x2y2,(x,y)̸=(0,0)0,(x,y)=(0,0),f(x,y)(0,0)x0,y0limf(x,y)=x0,y0limx2+y2x2y2=0=f(0,0),fx(0,0)=x0limxf(x,0)f(0,0)=x0limx00=0fy(0,0)=0x0,y0limx+y2f(x,y)f(0,0)0=x0,y0lim(x2+y2)3/2x2y2=0f(x,y)(0,0)(axy3y2cosx)dx+(1+bysinx+3x2y2)dyu(x,y)xu=axy3y2cosxyu=1+bysinx+3x2y2xy2u=3axy22ycosxyx2u=bycosx+6xy2a=2,b=2

计算

链式求导规则+高阶偏导复合结构不变

z
u
v
x
y

1.设z=f(u,v,x),u=u(x,y),v=v(y)都是可微函数,求∂z∂x和∂z∂y∂z∂x=f1′⋅∂u∂x+f3′⋅1∂z∂y=f1′∂u∂y+f2′⋅dvdy[注]u是二元→∂,v是一元→d2.设z=f(exsin⁡y,x2+y2),其中f具有二阶连续偏导数,求∂2z∂x∂y∂z∂x=f1′⋅exsin⁡y+f2′⋅2x∂2z∂x∂y=(f11′′⋅excos⁡y+f12′′⋅2y)⋅exsin⁡y+f1′⋅excos⁡y+2x(f21′′⋅excos⁡y+f22′′⋅2y)=e2xsin⁡ycos⁡y⋅f11′′+(2yexsin⁡y+2xexcos⁡y)⋅f12′′+excos⁡yf1′+4xyf22′′3.设z=f(u,v,x),u=xey,其中f具有二阶连续偏导数,求∂2z∂x∂y∂z∂x=f1′⋅ey+f2′⋅1∂2z∂x∂y=(f11′′⋅xey+f13′′⋅1)⋅ey+f1′⋅ey+(f21′′⋅xey+f23′′⋅1)4.设z=f(2x−y)+g(x,xy),其中f二阶可导,g具有二阶连续偏导数,求∂2z∂x∂y∂z∂x=f′⋅2+g1′⋅1+g2′⋅y∂2z∂x∂y=2f′′⋅(−1)+g12′′⋅x+g22′′⋅x⋅y+g2′⋅15.设F(u,v)二阶偏导连续,并设z=F(yx,x2+y2),求∂2z∂x∂y∂z∂x=F1′(−yx2)+F2′⋅2x∂2z∂x∂y=∂(∂z∂x)∂y=∂(F1′⋅(−yx2))∂y+∂(F2′⋅2x)∂y=∂F1′∂y(−yx2)+F1′(−1x2)+2x∂F2′∂y=(F11′′(1x)+F12′′2y)(−yx2)+F1′(−1x2)+2x(F21′′(1x)+F22′′2y)\begin{aligned} 1.&amp;\color{maroon}设z=f(u,v,x),u=u(x,y),v=v(y)都是可微函数,求\frac{\partial z}{\partial x}和\frac{\partial z}{\partial y}\\ &amp;\frac{\partial z}{\partial x}=f_1&#x27;\cdot\frac{\partial u}{\partial x}+f_3&#x27;\cdot1\\ &amp;\frac{\partial z}{\partial y}=f_1&#x27;\frac{\partial u}{\partial y}+f_2&#x27;\cdot\frac{dv}{dy}\\ &amp;\color{grey}[注]u是二元\to \partial,v是一元\to d\\ 2.&amp;\color{maroon}设z=f(e^x\sin y,x^2+y^2),其中f具有二阶连续偏导数,求\frac{\partial^2 z}{\partial x\partial y}\\ &amp;\frac{\partial z}{\partial x}=f_1&#x27;\cdot e^x\sin y+f_2&#x27;\cdot2x\\ &amp;\frac{\partial^2z}{\partial x \partial y}=(f_{11}&#x27;&#x27;\cdot e^x\cos y+f_{12}&#x27;&#x27;\cdot2y)\cdot e^x\sin y+f_1&#x27;\cdot e^x\cos y+2x(f_{21}&#x27;&#x27;\cdot e^x\cos y+f_{22}&#x27;&#x27;\cdot2y)\\ &amp;=e^{2x}\sin y\cos y\cdot f_{11}&#x27;&#x27;+(2ye^x\sin y+2xe^x\cos y)\cdot f_{12}&#x27;&#x27;+e^x\cos y f_1&#x27;+4xyf_{22}&#x27;&#x27;\\ 3.&amp;\color{maroon}设z=f(u,v,x),u=xe^y,其中f具有二阶连续偏导数,求\frac{\partial^2z}{\partial x\partial y}\\ &amp;\frac{\partial z}{\partial x}=f_1&#x27;\cdot e^y+f_2&#x27;\cdot1\\ &amp;\frac{\partial^2z}{\partial x \partial y}=(f_{11}&#x27;&#x27;\cdot xe^y+f_{13}&#x27;&#x27;\cdot1)\cdot e^y+f_1&#x27;\cdot e^y+(f_{21}&#x27;&#x27;\cdot xe^y+f_{23}&#x27;&#x27;\cdot1)\\ 4.&amp;\color{maroon}设z=f(2x-y)+g(x,xy),其中f二阶可导,g具有二阶连续偏导数,求\frac{\partial^2z}{\partial x \partial y}\\ &amp;\frac{\partial z}{\partial x}=f&#x27;\cdot2+g_1&#x27;\cdot1+g_2&#x27;\cdot y\\ &amp;\frac{\partial^2z}{\partial x\partial y}=2f&#x27;&#x27;\cdot(-1)+g_{12}&#x27;&#x27;\cdot x+g_{22}&#x27;&#x27;\cdot x\cdot y+g_2&#x27;\cdot1\\ 5.&amp;\color{maroon}设F(u,v)二阶偏导连续,并设z=F(\frac yx,x^2+y^2),求\frac{\partial^2z}{\partial x\partial y}\\ &amp;\frac{\partial z}{\partial x}=F_1&#x27;(-\frac{y}{x^2})+F_2&#x27;\cdot 2x\\ &amp;\frac{\partial^2z}{\partial x\partial y}=\frac{\partial(\frac{\partial z}{\partial x})}{\partial y}=\frac{\partial(F_1&#x27;\cdot(-\frac y{x^2}))}{\partial y}+\frac{\partial(F_2&#x27;\cdot2x)}{\partial y}\\ &amp;=\frac{\partial F_1&#x27;}{\partial y}(-\frac y{x^2})+F_1&#x27;(-\frac1{x^2})+2x\frac{\partial F_2&#x27;}{\partial y}\\ &amp;=(F_{11}&#x27;&#x27;(\frac1x)+F_{12}&#x27;&#x27;2y)(-\frac y{x^2})+F_1&#x27;(-\frac1{x^2})+2x(F_{21}&#x27;&#x27;(\frac1x)+F_{22}&#x27;&#x27;2y)\\ \end{aligned} 1.2.3.4.5.z=f(u,v,x),u=u(x,y),v=v(y)xzyzxz=f1xu+f31yz=f1yu+f2dydv[]u,vdz=f(exsiny,x2+y2),fxy2zxz=f1exsiny+f22xxy2z=(f11excosy+f122y)exsiny+f1excosy+2x(f21excosy+f222y)=e2xsinycosyf11+(2yexsiny+2xexcosy)f12+excosyf1+4xyf22z=f(u,v,x),u=xey,fxy2zxz=f1ey+f21xy2z=(f11xey+f131)ey+f1ey+(f21xey+f231)z=f(2xy)+g(x,xy),fgxy2zxz=f2+g11+g2yxy2z=2f(1)+g12x+g22xy+g21F(u,v)z=F(xy,x2+y2),xy2zxz=F1(x2y)+F22xxy2z=y(xz)=y(F1(x2y))+y(F22x)=yF1(x2y)+F1(x21)+2xyF2=(F11(x1)+F122y)(x2y)+F1(x21)+2x(F21(x1)+F222y)

隐函数求导

F(x,y,z)=0&ThickSpace;⟹&ThickSpace;z=z(x,y)&ThickSpace;⟹&ThickSpace;F(x,y,z(x,y))=0\begin{aligned} &amp;F(x,y,z)=0\implies z=z(x,y)\implies F(x,y,z(x,y))=0 \end{aligned} F(x,y,z)=0z=z(x,y)F(x,y,z(x,y))=0

F
1x
2y
3z
x
y

∂F∂x=Fx′=F1′+Fz′∂z∂x=0&ThickSpace;⟹&ThickSpace;{∂z∂x=−Fx′Fz′∂z∂y=−Fy′Fz′\begin{aligned} &amp;\frac{\partial F}{\partial x}=F_x&#x27;=F_1&#x27;+F_z&#x27;\frac{\partial z}{\partial x}=0\implies\begin{cases}\frac{\partial z}{\partial x}=-\frac{F_x&#x27;}{F_z&#x27;}\\\frac{\partial z}{\partial y}=-\frac{F_y&#x27;}{F_z&#x27;}\end{cases} \end{aligned} xF=Fx=F1+Fzxz=0xz=FzFxyz=FzFy

1.设z=z(x,y)由方程ln⁡z+ez−1=xy确定,则∂z∂x∣(2,12)方法一.由ln⁡z+ez−1=xy&ThickSpace;⟹&ThickSpace;1z⋅zx′+ez−1⋅zx′=y由x=2,y=12,代入前者,则z=1;代入后者,则zx′=14方法二.令F(x,y,z)=ln⁡z+ez−1−xy=o&ThickSpace;⟹&ThickSpace;∂z∂x=−Fx′Fz′=−−y1z+ez−1∣(2,1x,1)=142.设z=z(x,y)由方程F(x+zy,y+zx)=0确定,其中F由连续偏导数,求x∂z∂x+y∂z∂y方法一.F1′⋅(1+1y∂z∂x)+F2′⋅∂z∂x⋅x−zx2=0(对x)F1′⋅∂z∂y⋅y−zy2+F2′⋅(1+1x⋅∂z∂y)=0(对y)&ThickSpace;⟹&ThickSpace;x⋅∂z∂x+y⋅∂z∂y=z−xy方法二.∂z∂x=−Fx′Fz′=−F1′+F2′(−zx2)F1′(1y)+F2′(1x)∂z∂y=−Fy′Fz′=−F1′(−zy2)+F2′F1′(1y)+F2′(1x)I=z−xy3.设{u=f(x−ut,y−ut,z−ut)g(x,y,z),求∂u∂x,∂u∂y[分析]一般有几个方程,就有几个因变量,其余的字母都是自变量∂u∂x=f1′⋅(1−∂u∂xt)+f2′⋅(−∂u∂xt)+f3′⋅(∂z∂x−∂u∂xt)g1′⋅1+g2′⋅0+g3′⋅∂z∂x=0解得∂u∂x=f1′g3′−f3′g1′g3′[1+t(f1′+f2′+f3′)]对y求偏导数同样可得∂u∂y=f2′g3′−f3′g2′g3′[1+t(f1′+f2′+f3′)]\begin{aligned} 1.&amp;\color{maroon}设z=z(x,y)由方程\ln z+e^{z-1}=xy确定,则\frac{\partial z}{\partial x}|_{(2,\frac12)}\\ 方法一.&amp;由\ln z+e^{z-1}=xy\implies \frac1z\cdot z_x&#x27;+e^{z-1}\cdot z_x&#x27;=y\\ &amp;由x=2,y=\frac12,代入前者,则z=1;代入后者,则z_x&#x27;=\frac14\\ 方法二.&amp;令F(x,y,z)=\ln z+e^{z-1}-xy=o\\ &amp;\implies\frac{\partial z}{\partial x}=-\frac{F_x&#x27;}{F_z&#x27;}=-\frac{-y}{\frac1z+e^{z-1}}|_{(2,\frac1x,1)}=\frac14\\ 2.&amp;\color{maroon}设z=z(x,y)由方程F(x+\frac zy,y+\frac zx)=0确定,其中F由连续偏导数,求x\frac{\partial z}{\partial x}+y\frac{\partial z}{\partial y}\\ 方法一.&amp;F_1&#x27;\cdot(1+\frac1y\frac{\partial z}{\partial x})+F_2&#x27;\cdot\frac{\frac{\partial z}{\partial x}\cdot x-z}{x^2}=0(对x)\\ &amp;F_1&#x27;\cdot\frac{\frac{\partial z}{\partial y}\cdot y-z}{y^2}+F_2&#x27;\cdot(1+\frac1x\cdot\frac{\partial z}{\partial y})=0(对y)\\ &amp;\implies x\cdot\frac{\partial z}{\partial x}+y\cdot\frac{\partial z}{\partial y}=z-xy\\ 方法二.&amp;\frac{\partial z}{\partial x}=-\frac{F_x&#x27;}{F_z&#x27;}=-\frac{F_1&#x27;+F_2&#x27;(-\frac{z}{x^2})}{F_1&#x27;(\frac1y)+F_2&#x27;(\frac1x)}\\ &amp;\frac{\partial z}{\partial y}=-\frac{F_y&#x27;}{F_z&#x27;}=-\frac{F_1&#x27;(-\frac{z}{y^2})+F_2&#x27;}{F_1&#x27;(\frac1y)+F_2&#x27;(\frac1x)}\\ &amp;I=z-xy\\ 3.&amp;\color{maroon}设\begin{cases}u=f(x-ut,y-ut,z-ut)\\g(x,y,z)\end{cases},求\frac{\partial u}{\partial x},\frac{\partial u}{\partial y}\\ &amp;[分析]一般有几个方程,就有几个因变量,其余的字母都是自变量\\ &amp;\frac{\partial u}{\partial x}=f_1&#x27;\cdot(1-\frac{\partial u}{\partial x}t)+f_2&#x27;\cdot(-\frac{\partial u}{\partial x}t)+f_3&#x27;\cdot(\frac{\partial z}{\partial x}-\frac{\partial u}{\partial x}t)\\ &amp;g_1&#x27;\cdot1+g_2&#x27;\cdot0+g_3&#x27;\cdot\frac{\partial z}{\partial x}=0\\ &amp;解得\frac{\partial u}{\partial x}=\frac{f_1&#x27;g_3&#x27;-f_3&#x27;g_1&#x27;}{g_3&#x27;[1+t(f_1&#x27;+f_2&#x27;+f_3&#x27;)]}\\ &amp;对y求偏导数同样可得\frac{\partial u}{\partial y}=\frac{f_2&#x27;g_3&#x27;-f_3&#x27;g_2&#x27;}{g_3&#x27;[1+t(f_1&#x27;+f_2&#x27;+f_3&#x27;)]}\\ \end{aligned} 1...2...3.z=z(x,y)lnz+ez1=xyxz(2,21)lnz+ez1=xyz1zx+ez1zx=yx=2,y=21,z=1;zx=41F(x,y,z)=lnz+ez1xy=oxz=FzFx=z1+ez1y(2,x1,1)=41z=z(x,y)F(x+yz,y+xz)=0Fxxz+yyzF1(1+y1xz)+F2x2xzxz=0(x)F1y2yzyz+F2(1+x1yz)=0(y)xxz+yyz=zxyxz=FzFx=F1(y1)+F2(x1)F1+F2(x2z)yz=FzFy=F1(y1)+F2(x1)F1(y2z)+F2I=zxy{u=f(xut,yut,zut)g(x,y,z),xu,yu[]xu=f1(1xut)+f2(xut)+f3(xzxut)g11+g20+g3xz=0xu=g3[1+t(f1+f2+f3)]f1g3f3g1yyu=g3[1+t(f1+f2+f3)]f2g3f3g2

应用

无条件极值

1.必要条件{fx′(x0,y0)=0fy′(x0,y0)=02.充分条件{A&gt;0且AC−B2&gt;0&ThickSpace;⟹&ThickSpace;极小A&lt;0且AC−B2&gt;0&ThickSpace;⟹&ThickSpace;极大AC−B2&lt;0&ThickSpace;⟹&ThickSpace;非极值点[注]记A=fxx′′(x0,y0),B=fxy′′(x0,y0),C=fyy′′(x0,y0)\begin{aligned} 1.&amp;必要条件\begin{cases}f_x&#x27;(x_0,y_0)=0\\f_y&#x27;(x_0,y_0)=0\end{cases}\\ 2.&amp;充分条件\begin{cases}A&gt;0且AC-B^2&gt;0\implies极小\\A&lt;0且AC-B^2&gt;0\implies极大\\AC-B^2&lt;0\implies非极值点\end{cases}\\ [注]&amp;记A=f_{xx}&#x27;&#x27;(x_0,y_0),B=f_{xy}&#x27;&#x27;(x_0,y_0),C=f_{yy}&#x27;&#x27;(x_0,y_0)\\ \end{aligned} 1.2.[]{fx(x0,y0)=0fy(x0,y0)=0A>0ACB2>0A<0ACB2>0ACB2<0A=fxx(x0,y0),B=fxy(x0,y0),C=fyy(x0,y0)

条件极值

1.构造拉格朗日函数F(x,y,λ)=f(x,y)+λφ(x,y),2.令{Fx′=fx′(x,y)+λφx′(x,y)=0Fy′=fy′(x,y)+λφy′(x,y)=0Fλ′=φ(x,y)=03.比较上述各函数值的大小,最大的为最大值,最小的为最小值\begin{aligned} 1.&amp;构造拉格朗日函数F(x,y,\lambda)=f(x,y)+\lambda\varphi(x,y),\\ 2.&amp;令\begin{cases}F_x&#x27;=f_x&#x27;(x,y)+\lambda\varphi_x&#x27;(x,y)=0\\F_y&#x27;=f_y&#x27;(x,y)+\lambda\varphi_y&#x27;(x,y)=0\\F_\lambda&#x27;=\varphi(x,y)=0\end{cases}\\ 3.&amp;比较上述各函数值的大小,最大的为最大值,最小的为最小值\\ \end{aligned} 1.2.3.F(x,y,λ)=f(x,y)+λφ(x,y),Fx=fx(x,y)+λφx(x,y)=0Fy=fy(x,y)+λφy(x,y)=0Fλ=φ(x,y)=0

1.设z=z(x,y)由方程(x2+y2)z+ln⁡z+2(x+y+1)=0确定,求z=z(x,y)的极值由方程得2xz+(x2+y2)zx′+1zzx′+2=0&ThickSpace;⟹&ThickSpace;2yz+(x2+y2)zy′+1zzy′+2=0令zx′=0,zy′=0,则x=y=−1z代入第一个式子得:2z+ln⁡z−4z+2=0&ThickSpace;⟹&ThickSpace;z=1∴x=y=−1,z=1&ThickSpace;⟹&ThickSpace;2z+2xzx′+2xzx′+(x2+y2)zxx′′+zxx′′⋅z−zx′2z2=0&ThickSpace;⟹&ThickSpace;2xzy′+2yzx′+(x2+y2)zxy′′+zxy′′⋅z−zx′⋅zy′z2=0A=zxx′′(−1,−1)=−23=c(对称性)B=zxy′′(−1,−1)=0,由B2−AC&lt;0且A&lt;0故z(−1,−1)=1极大值2.求函数u=x2+y2+z2在条件z=x2+y2及x+y+z=4下的最大值与最小值令F(x,y,z,λ,μ)=x2+y2+z2+λ(x2+y2−z)+μ(x+y+z−4)得{Fx′=2x+2λx+μ=0Fy′=2y+2xy+μ=0Fz′=2z−λ+μ=0Fλ′=x2+y2−z=0Fμ′=x+y+z−4=0解得:P1(1,1,2),P2(−2,−2,8)由u(P1)=6为最小值,且u(P2)=72为最大值3.求u=x2+y2+z2在(x−y)2−z2=1条件下的最小值令F(x,y,z,λ)=x2+y2+z2+λ((x−y)2−z2−1){Fx′=2x+2λ(x−y)=0Fy′=2y−2λ(x−y)=0Fz′=2z−2λz=0Fλ′=(x−y)2−z2−1=0解得:P1(−12,12,0),P2(12,−12,0)由u(P1)=u(P2)=224.求f(x,y)=x2−y2+2在椭圆域D:x2+y24≤1上的最大值与最小值内部→f(x,y),由fx′=2x=0,fy′=−2y=0边界→F(x,y,λ)F(x,y,λ)=x2−y2+λ(x2+y24−1)由Fx′=2x+2λx=0,Fy′=−2y+λ2y=0Fx′=x2+y24−1=0f(0,0)=2,f(+−1,0=3)最大,f(0,+−2)=−2最小5.求f(x,y)=x+xy−x2−y2在闭区域D:0≤x≤1,0≤y≤2上得最大值与最小值内部→f(x,y),由fx′=1+y−2x=0,fy′=x−2y=0边界(代入法)L1:y=0(0≤x≤1)&ThickSpace;⟹&ThickSpace;f(x,0)=x−x2=φ(x)&ThickSpace;⟹&ThickSpace;(12,0),(0,0),(1,0)L2:x=1(0&lt;y&lt;2)&ThickSpace;⟹&ThickSpace;f(1,y)=y−y2&ThickSpace;⟹&ThickSpace;(1,12)L3:y=2(0≤x≤1)&ThickSpace;⟹&ThickSpace;f(x,2)=3x−x2−4&ThickSpace;⟹&ThickSpace;(0,2),(1,2)L4:x=0(0&lt;y&lt;2)&ThickSpace;⟹&ThickSpace;f(0,y)=−y2比较得最大值为13,最小值为−4\begin{aligned} 1.&amp;\color{maroon}设z=z(x,y)由方程(x^2+y^2)z+\ln z+2(x+y+1)=0确定,求z=z(x,y)的极值\\ &amp;由方程得2xz+(x^2+y^2)z_x&#x27;+\frac1zz_x&#x27;+2=0\\ &amp;\implies2yz+(x^2+y^2)z_y&#x27;+\frac1zz_y&#x27;+2=0\\ &amp;令z_x&#x27;=0,z_y&#x27;=0,则x=y=-\frac1z代入第一个式子\\ &amp;得:\frac2z+\ln z-\frac4z+2=0\implies z=1\\ &amp;\therefore x=y=-1,z=1\\ &amp;\implies 2z+2xz_x&#x27;+2xz_x&#x27;+(x^2+y^2)z_{xx}&#x27;&#x27;+\frac{z_{xx}&#x27;&#x27;\cdot z-z_x&#x27;^2}{z^2}=0\\ &amp;\implies 2xz_y&#x27;+2yz_x&#x27;+(x^2+y^2)z_{xy}&#x27;&#x27;+\frac{z_{xy}&#x27;&#x27;\cdot z-z_x&#x27;\cdot z_y&#x27;}{z^2}=0\\ &amp;A=z_{xx}&#x27;&#x27;(-1,-1)=-\frac23=c(对称性)\\ &amp;B=z_{xy}&#x27;&#x27;(-1,-1)=0,由B^2-AC&lt;0且A&lt;0\\ &amp;故z(-1,-1)=1极大值\\ 2.&amp;\color{maroon}求函数u=x^2+y^2+z^2在条件z=x^2+y^2及x+y+z=4下的最大值与最小值\\ &amp;令F(x,y,z,\lambda,\mu)=x^2+y^2+z^2+\lambda(x^2+y^2-z)+\mu(x+y+z-4)\\ 得&amp;\begin{cases}F_x&#x27;=2x+2\lambda x+\mu=0\\ F_y&#x27;=2y+2xy+\mu=0\\ F_z&#x27;=2z-\lambda+\mu=0\\ F_\lambda&#x27;=x^2+y^2-z=0\\ F_\mu&#x27;=x+y+z-4=0\end{cases}解得:P_1(1,1,2),P_2(-2,-2,8)\\ &amp;由u(P_1)=6为最小值,且u(P_2)=72为最大值\\ 3.&amp;\color{maroon}求u=\sqrt{x^2+y^2+z^2}在(x-y)^2-z^2=1条件下的最小值\\ &amp;令F(x,y,z,\lambda)=x^2+y^2+z^2+\lambda((x-y)^2-z^2-1)\\ &amp;\begin{cases}F_x&#x27;=2x+2\lambda(x-y)=0\\ F_y&#x27;=2y-2\lambda(x-y)=0\\ F_z&#x27;=2z-2\lambda z=0\\ F_\lambda&#x27;=(x-y)^2-z^2-1=0\end{cases}解得:P_1(-\frac12,\frac12,0),P_2(\frac12,-\frac12,0)\\ &amp;由u(P_1)=u(P_2)=\frac{\sqrt{2}}2\\ 4.&amp;\color{maroon}求f(x,y)=x^2-y^2+2在椭圆域D:x^2+\frac{y^2}4\leq1上的最大值与最小值\\ &amp;内部\to f(x,y),由f_x&#x27;=2x=0,f_y&#x27;=-2y=0\\ &amp;边界\to F(x,y,\lambda)\\ &amp;F(x,y,\lambda)=x^2-y^2+\lambda(x^2+\frac{y^2}4-1)\\ &amp;由F_x&#x27;=2x+2\lambda x=0,F_y&#x27;=-2y+\frac{\lambda}2y=0\\ &amp;F_x&#x27;=x^2+\frac{y^2}4-1=0\\ &amp;f(0,0)=2,f(+-1,0=3)最大,f(0,+-2)=-2最小\\ 5.&amp;\color{maroon}求f(x,y)=x+xy-x^2-y^2在闭区域D:0\leq x\leq1,0\leq y\leq2上得最大值与最小值\\ &amp;内部\to f(x,y),由f_x&#x27;=1+y-2x=0,f_y&#x27;=x-2y=0\\ &amp;边界(代入法)L_1:y=0(0\leq x\leq1)\implies f(x,0)=x-x^2=\varphi(x)\implies (\frac12,0),(0,0),(1,0)\\ &amp;L_2:x=1(0&lt;y&lt;2) \implies f(1,y)=y-y^2\implies (1,\frac12)\\ &amp;L_3:y=2(0\leq x\leq1)\implies f(x,2)=3x-x^2-4\implies (0,2),(1,2)\\ &amp;L_4:x=0(0&lt;y&lt;2) \implies f(0,y)=-y^2\\ &amp;比较得最大值为\frac13,最小值为-4 \end{aligned} 1.2.3.4.5.z=z(x,y)(x2+y2)z+lnz+2(x+y+1)=0z=z(x,y)2xz+(x2+y2)zx+z1zx+2=02yz+(x2+y2)zy+z1zy+2=0zx=0,zy=0,x=y=z1z2+lnzz4+2=0z=1x=y=1,z=12z+2xzx+2xzx+(x2+y2)zxx+z2zxxzzx2=02xzy+2yzx+(x2+y2)zxy+z2zxyzzxzy=0A=zxx(1,1)=32=c()B=zxy(1,1)=0,B2AC<0A<0z(1,1)=1u=x2+y2+z2z=x2+y2x+y+z=4F(x,y,z,λ,μ)=x2+y2+z2+λ(x2+y2z)+μ(x+y+z4)Fx=2x+2λx+μ=0Fy=2y+2xy+μ=0Fz=2zλ+μ=0Fλ=x2+y2z=0Fμ=x+y+z4=0P1(1,1,2),P2(2,2,8)u(P1)=6,u(P2)=72u=x2+y2+z2(xy)2z2=1F(x,y,z,λ)=x2+y2+z2+λ((xy)2z21)Fx=2x+2λ(xy)=0Fy=2y2λ(xy)=0Fz=2z2λz=0Fλ=(xy)2z21=0P1(21,21,0),P2(21,21,0)u(P1)=u(P2)=22f(x,y)=x2y2+2D:x2+4y21f(x,y),fx=2x=0,fy=2y=0F(x,y,λ)F(x,y,λ)=x2y2+λ(x2+4y21)Fx=2x+2λx=0,Fy=2y+2λy=0Fx=x2+4y21=0f(0,0)=2,f(+1,0=3),f(0,+2)=2f(x,y)=x+xyx2y2D:0x1,0y2f(x,y),fx=1+y2x=0,fy=x2y=0()L1:y=0(0x1)f(x,0)=xx2=φ(x)(21,0),(0,0),(1,0)L2:x=1(0<y<2)f(1,y)=yy2(1,21)L3:y=2(0x1)f(x,2)=3xx24(0,2),(1,2)L4:x=0(0<y<2)f(0,y)=y2314

http://www.lbrq.cn/news/752905.html

相关文章:

  • 北京建网站需要多少钱/百度sem推广具体做什么
  • wordpress怎么设置小图标/seo宣传
  • 做网站的书籍推荐/宁波网站推广联系方式
  • 如何做网站代理/域名注册查询阿里云
  • 海外高延迟服务器做网站/百度助手安卓版下载
  • 重庆江北区网站建设公司/沈阳今天刚刚发生的新闻
  • 做网站的人 优帮云/营销方案范文
  • pb 做网站/怎么注册自己的网址
  • 最新流行网站开发技术/网站建设苏州
  • 小网站建设/今日头条官网
  • 做网站要几天/企业网站营销的优缺点
  • 烟台网站建设-中国互联/国外免费源码共享网站
  • 网站如何提高流量/台州关键词优化推荐
  • 网站建设属于营业范围里的哪一项/学校网站建设
  • 深圳广东网站建设套餐/营销企业
  • 吉林系统建站怎么用/杭州seo网站哪家好
  • google 空间 网站/网站seo具体怎么做
  • 代做毕业设计网站/营销渠道管理
  • 廊坊seo整站优化软件/标题优化怎样选关键词
  • 阿里主机 wordpress/seo广告投放
  • Java做新闻网站/快速seo关键词优化方案
  • dede 网站图标/地推接单正规平台
  • 电子政务公开 网站建设/什么是友情链接?
  • 资料网站怎么做/站长工具seo综合查询分析
  • 本地主机做网站/最近一周的时政热点新闻
  • 网站的注册和登录界面怎么做/北京企业网站推广哪家公司好
  • 做网站最大可以做多少g/好的产品怎么推广语言
  • 网站你们都知道/手机软文广告300字
  • 免费的导航页/学seo的培训学校
  • 昆明企业建站程序/沈阳今日新闻头条
  • 如何让AI视频模型(如Veo)开口说中文?一个顶级提示词的深度拆解
  • 力扣 hot100 Day76
  • Python异常、模块与包(五分钟小白从入门)
  • 测试18种RAG技术,找出最优方案(四)
  • docker安装mongodb及java连接实战
  • 零基础学习人工智能的完整路线规划