当前位置: 首页 > news >正文

安徽营销型网站建设微信公众号怎么推广

安徽营销型网站建设,微信公众号怎么推广,四川今天刚刚发生的新闻,浙江新华建设有限公司官方网站算法的执行效率&#xff0c;粗略地讲&#xff0c;就是算法代码执行的时间.这里有段非常简单的代码&#xff0c;求1,2,3…n的累加和。现在&#xff0c;我就带你一块来估算一下这段代码的执行时间。 int cal(int n) { int sum 0; int i 1; for (; i < n; i) { sum sum i; …

算法的执行效率,粗略地讲,就是算法代码执行的时间.

这里有段非常简单的代码,求1,2,3…n的累加和。现在,我就带你一块来估算一下这段代码的执行时间。

int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}

从CPU的角度来看,这段代码的每一行都执行着类似的操作:读数据-运算-写数据。尽管每行代码对应的CPU执行的个数、执行的时间都不一样,但是,我们这里只是粗略估计,所以可以假设每行代码执行的时间都一样,为unit_time。在这个假设的基础之上,这段代码的总执行时间是多少呢?

第2、3行代码分别需要1个unit_time的执行时间,第4、5行都运行了n遍,所以需要2n*unit_time的执行时间,所以这段代码总的执行时间就是(2n+2)*unit_time。可以看出来,所有代码的执行时间T(n)与每行代码的执行次数成正比。

按照这个分析思路,我们再来看这段代码。

int cal(int n) {
int sum = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum = sum + i * j;
}
}
}

我们依旧假设每个语句的执行时间是unit_time。那这段代码的总执行时间T(n)是多少呢?

第2、3、4行代码,每行都需要1个unit_time的执行时间,第5、6行代码循环执行了n遍,需要2n * unit_time的执行时间,第7、8行代码循环执行了

遍,所以需要
* unit_time的执行时间。所以,整段代码总的执行时间T(n) = (
+2n+3)*unit_time。

尽管我们不知道unit_time的具体值,但是通过这两段代码执行时间的推导过程,我们可以得到一个非常重要的规律,那就是,所有代码的执行时间T(n)与每行代码的执行次数n成正比。

我们可以把这个规律总结成一个公式。注意,大O就要登场了!

fad8613cb4e2706cd7c8f540d74c8fbd.png

我来具体解释一下这个公式。其中,T(n)我们已经讲过了,它表示代码执行的时间;n表示数据规模的大小;f(n)表示每行代码执行的次数总和。因为这是一个公式,所以用f(n)来表示。公式中的O,表示代码的执行时间T(n)与f(n)表达式成正比。

所以,第一个例子中的T(n) = O(2n+2),第二个例子中的T(n) = O (

+2n+3)。这就是大O时间复杂度表示法。大O时间复杂度实际上并不具体表示代码真正的执行时间,而是表示代码执行时间随数据规模增长的变化趋势,所以,也叫作渐进时间复杂度(asymptotic time complexity),简称时间复杂度。

当n很大时,你可以把它想象成10000、100000。而公式中的低阶、常量、系数三部分并不左右增长趋势,所以都可以忽略。我们只需要记录一个最大量级就可以了,如果用大O表示法表示刚讲的那两段代码的时间复杂度,就可以记为:T(n) = O(n); T(n) = O(

)。

时间复杂度分析

1.只关注循环执行次数最多的一段代码

我刚才说了,大O这种复杂度表示方法只是表示一种变化趋势。我们通常会忽略掉公式中的常量、低阶、系数,只需要记录一个最大阶的量级就可以了。所以,我们在分析一个算法、一段代码的时间复杂度的时候,也只关注循环执行次数最多的那一段代码就可以了。这段核心代码执行次数的n的量级,就是整段要分析代码的时间复杂度。为了便于你理解,我还拿前面的例子来说明。

int cal(int n) {
int sum = 0;
int i = 1;
for (; i <= n; ++i) {
sum = sum + i;
}
return sum;
}

其中第2、3行代码都是常量级的执行时间,与n的大小无关,所以对于复杂度并没有影响。循环执行次数最多的是第4、5行代码,所以这块代码要重点分析。前面我们也讲过,这两行代码被执行了n次,所以总的时间复杂度就是O(n)。

2.加法法则:总复杂度等于量级最大的那段代码的复杂度

int cal(int n) {
int sum_1 = 0;
int p = 1;
for (; p < 100; ++p) {
sum_1 = sum_1 + p;
}
int sum_2 = 0;
int q = 1;
for (; q < n; ++q) {
sum_2 = sum_2 + q;
}
int sum_3 = 0;
int i = 1;
int j = 1;
for (; i <= n; ++i) {
j = 1;
for (; j <= n; ++j) {
sum_3 = sum_3 + i * j;
}
}
return sum_1 + sum_2 + sum_3;
}

第一段的时间复杂度是多少呢?这段代码循环执行了100次,所以是一个常量的执行时间,跟n的规模无关。

即便这段代码循环10000次、100000次,只要是一个已知的数,跟n无关,照样也是常量级的执行时间。当n无限大的时候,就可以忽略。尽管对代码的执行时间会有很大影响,但是回到时间复杂度的概念来说,它表示的是一个算法执行效率与数据规模增长的变化趋势,所以不管常量的执行时间多大,我们都可以忽略掉。因为它本身对增长趋势并没有影响。

那第二段代码和第三段代码的时间复杂度是多少呢?答案是O(n)和O(

)。

综合这三段代码的时间复杂度,我们取其中最大的量级。所以,整段代码的时间复杂度就为O(n2)。也就是说:总的时间复杂度就等于量级最大的那段代码的时间复杂度。那我们将这个规律抽象成公式就是:

如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)+T2(n)=max(O(f(n)), O(g(n))) =O(max(f(n), g(n))).

3.乘法法则:嵌套代码的复杂度等于嵌套内外代码复杂度的乘积

如果T1(n)=O(f(n)),T2(n)=O(g(n));那么T(n)=T1(n)*T2(n)=O(f(n))*O(g(n))=O(f(n)*g(n)).

也就是说,假设T1(n) = O(n),T2(n) = O(n2),则T1(n) * T2(n) = O(n3)。落实到具体的代码上,我们可以把乘法法则看成是嵌套循环。

int cal(int n) {
int ret = 0;
int i = 1;
for (; i < n; ++i) {
ret = ret + f(i);
}
}
int f(int n) {
int sum = 0;
int i = 1;
for (; i < n; ++i) {
sum = sum + i;
}
return sum;
}

我们单独看cal()函数。假设f()只是一个普通的操作,那第4~6行的时间复杂度就是,T1(n) = O(n)。但f()函数本身不是一个简单的操作,它的时间复杂度是T2(n) =O(n),所以,整个cal()函数的时间复杂度就是,T(n) = T1(n) * T2(n) = O(n*n) = O(n2)。

几种常见时间复杂度实例分析

1. O(1)

首先你必须明确一个概念,O(1)只是常量级时间复杂度的一种表示方法,并不是指只执行了一行代码。比如这段代码,即便有3行,它的时间复杂度也是O(1),而不是O(3)。

int i = 8;
int j = 6;
int sum = i + j;

2. O(logn)、O(nlogn)

对数阶时间复杂度非常常见,同时也是最难分析的一种时间复杂度。我通过一个例子来说明一下。

i=1;
while (i <= n) {
i = i * 2;
}

从代码中可以看出,变量i的值从1开始取,每循环一次就乘以2。当大于n时,循环结束。如果我把它一个一个列出来,就应该是这个样子的:

7551bdeeb01fa1dd66e25b55e3018f17.png

所以,我们只要知道x值是多少,就知道这行代码执行的次数了。通过

=n求解x这个问题我们想高中应该就学过了,我就不多说了。x=log2n,所以,这段代码的时间复杂度就是O(log2n)。

现在,我把代码稍微改下,你再看看,这段代码的时间复杂度是多少?

i=1;
while (i <= n) {
i = i * 3;
}

根据我刚刚讲的思路,很简单就能看出来,这段代码的时间复杂度为O(log3n)。

实际上,不管是以2为底、以3为底,还是以10为底,我们可以把所有对数阶的时间复杂度都记为O(logn)。为什么呢?

我们知道,对数之间是可以互相转换的,log3n就等于log32 * log2n,所以O(log3n) = O(C * log2n),其中C=log32是一个常量。基于我们前面的一个理论:在采用大O标记复杂度的时候,可以忽略系数,即O(Cf(n)) = O(f(n))。所以,O(log2n) 就等于O(log3n)。因此,在对数阶时间复杂度的表示方法里,我们忽略对数的“底”,统一表示为O(logn)。

如果你理解了我前面讲的O(logn),那O(nlogn)就很容易理解了。还记得我们刚讲的乘法法则吗?如果一段代码的时间复杂度是O(logn),我们循环执行n遍,时间复杂度就是O(nlogn)了。而且,O(nlogn)也是一种非常常见的算法时间复杂度。比如,归并排序、快速排序的时间复杂度都是O(nlogn)。

3. O(m+n)、O(m*n)

int cal(int m, int n) {
int sum_1 = 0;
int i = 1;
for (; i < m; ++i) {
sum_1 = sum_1 + i;
}
int sum_2 = 0;
int j = 1;
for (; j < n; ++j) {
sum_2 = sum_2 + j;
}
return sum_1 + sum_2;
}

从代码中可以看出,m和n是表示两个数据规模。我们无法事先评估m和n谁的量级大,所以我们在表示复杂度的时候,就不能简单地利用加法法则,省略掉其中一个。所以,上面代码的时间复杂度就是O(m+n)。

针对这种情况,原来的加法法则就不正确了,我们需要将加法规则改为:T1(m) + T2(n) = O(f(m) + g(n))。但是乘法法则继续有效:T1(m)*T2(n) = O(f(m) * f(n))。

http://www.lbrq.cn/news/2561689.html

相关文章:

  • 网页制作网站建设实战大全南京百度推广开户
  • 网站推广策划评估指标有哪些热词分析工具
  • 网站相册优化公众号开发
  • 公司网站在哪备案十大网站排行榜
  • 口碑好的网站设计制作价格网站模板下载免费
  • 网站免费主机中国国家培训网是真的吗
  • 网站开发流程进度表2345浏览器网站进入
  • 郑州网站建设公司电话网站推广优化的方法
  • 软件开发工程师证书含金量高吗seo教程技术资源
  • 网站设计品金华网站推广
  • 台州网站建设 网站制作 网站设计《新闻联播》今天
  • 如何做网站卖家具竞价排名的弊端
  • 手机网站建设沈阳网站制作开发
  • 施工企业安全生产责任制度seo快速排名优化方式
  • 做外贸怎样上国外网站优化网站推广
  • 网站后台进不去的原因网站制作的基本流程
  • 上海网站建设公司联系方式深圳博惠seo
  • 企业网站里面的qq咨询怎么做建一个企业网站多少钱
  • 凡科建站公司百度seo网站优化
  • 电脑怎样做网站网络推广的工作好做吗
  • 网站建设合同要存档几年武汉服装seo整站优化方案
  • 网站需要怎么做的如何自己做网站
  • 个人建网站首选什么域名好域名邮箱 400电话
  • 自己怎么做电影网站吗百度收录网站
  • wordpress经典博客主题搜索seo引擎
  • 好的html5网站模板谷歌搜索引擎在线
  • 内蒙古住房与城乡建设厅网站网址网络软文营销案例3篇
  • 太原做网站联系方式郴州网站定制
  • 鞍山做网站模板网站建站公司
  • 自己做首饰的好网站深圳关键词seo
  • CommonJS和ES6 Modules区别
  • 堆----1.数组中的第K个最大元素
  • 基于coze studio开源框架二次定制开发教程
  • 【LeetCode 热题 100】394. 字符串解码
  • flutter release调试插件
  • unity学习——视觉小说开发(一)