当前位置: 首页 > news >正文

济南哪里有做网站的公司电脑培训学校哪家好

济南哪里有做网站的公司,电脑培训学校哪家好,网站排名优化方法,云梦做网站的优势文章目录前言一、题目描述二、递归法三、二维List法总结前言 杨辉三角是我们在学习过程中经常遇到的问题,而它也困扰着不少同学,今天笔者给大家带来了两种解决杨辉三角的方法,预祝读者学有所成。 提示:以下是本篇文章正文内容&am…

文章目录

  • 前言
  • 一、题目描述
  • 二、递归法
  • 三、二维List法
  • 总结


前言

杨辉三角是我们在学习过程中经常遇到的问题,而它也困扰着不少同学,今天笔者给大家带来了两种解决杨辉三角的方法,预祝读者学有所成。


提示:以下是本篇文章正文内容,下面案例可供参考

一、题目描述

杨辉三角形又称Pascal三角形,它的第i+1行是(a+b)i的展开式的系数。

它的一个重要性质是:三角形中的每个数字等于它两肩上的数字相加。

下面给出了杨辉三角形的前4行:
1

1 1

1 2 1

1 3 3 1

输入格式:
输入一个数n。

输出格式:
输出杨辉三角形的前n行。每一行从这一行的第一个数开始依次输出,中间使用一个空格分隔。请不要在前面输出多余的空格。

二、递归法

代码如下(示例):

import java.util.Scanner;
public class Main {//杨辉三角//法一:递归思想public static int dg(int i,int j) {//Aij=Ai-1j-1 +Ai-1j ,A表示数字,ij表示下标if(j==0||j>i){//这里ij从1开始,表示第i层第j个数//j越界说明是下一层最左边的数或最右边的数找过来的return 0;}else{if(i==1||j==1){return 1;}else{return dg(i-1,j-1)+dg(i-1,j);}}}public static void main(String[] args) {Scanner scanner = new Scanner(System.in);int n = scanner.nextInt();int i = 0;int j=0;for ( i = 1; i <= n; i++) {//i表示第i行,共n行for ( j = 1; j <= i; j++) {//每行i个数System.out.print(dg(i, j)+" ");}System.out.println();}}
}

递归法的解决思路就是,死死的抓住杨辉三角数字的特性:
第i行第j列的数=第i-1行第j-1列的数与第i-1行第j列的数和
简言之就是:a[i][j]=a[i-1][j-1]+a[i-1][j]

运行结果如下:
在这里插入图片描述
但是这种递归方法,如果你传的n比较大,每层每个数都要递归去找,运行就会比较慢,下面介绍List的方法

三、二维List法

原理就是我们创建一个二维的List,简单来说就是一个大List里面放着小List,小List里面放着我们杨辉三角的每一行数,图示如下:
在这里插入图片描述
代码如下(示例):

import java.util.ArrayList;
import java.util.Scanner;
public class Main {//杨辉三角:public static void generate(int numRows){List<List<Integer>> ret=new ArrayList<>();//第一行:List<Integer> list1=new ArrayList<>();list1.add(1);ret.add(list1);//把第一行数据放到ret里面//后续n-1行for(int i=1;i<numRows;i++){List<Integer> list=new ArrayList<>();list.add(1);//每行第一个数据都是1//中间数据List<Integer> preRow= ret.get(i-1);//获取上一行下标为i-1的数for(int j=1;j<i;j++){int num= preRow.get(j)+preRow.get(j-1);list.add(num);}list.add(1);//每行最后一个数据都是1ret.add(list);}for(int i=0;i<ret.size();i++){//ret里面存了size个一维数组for(int j=0;j<ret.get(i).size();j++){//每个一维数组里存了每一行的数列System.out.print(ret.get(i).get(j)+" ");}System.out.println();}}public static void main(String[] args) {Scanner scanner=new Scanner(System.in);int n=scanner.nextInt();generate(n);}
}

运行结果如下:
在这里插入图片描述


总结

杨辉三角的解决要点就是a[i][j]=a[i-1][j-1]+a[i-1][j],笔者提供的递归法思路简单,但是实际运行的话时间复杂度比较高,第二种方法则需要读者对List有熟练的掌握,笔者前面也有关于List的文章,有兴趣的读者可自行阅读,最后祝愿读者学有所成。
http://www.lbrq.cn/news/2437957.html

相关文章:

  • 官网优化公司江东seo做关键词优化
  • 有什么网站可以做团购seo营销服务
  • 好的销售网站在线seo优化工具
  • 帝国cms能建设视频网站吗hao123影视
  • html5视频网站开发口碑营销的案例及分析
  • 品牌建设总结seo网络推广优化
  • 长沙营销型网站制作互联网营销师培训多少钱
  • 3d模型资源哪个网站比较好网络营销软文范例
  • 做网站的策划需要做什么优秀网站设计
  • 朋友圈网站广告怎么做网站推广专家
  • asp网站无法上传图片seo排名诊断
  • 外贸自建站费用促销方案
  • 怎样做网站 网页sem竞价培训
  • 建设网站有哪些方法有哪些石家庄网络推广
  • vs中做网站怎么设置图片标准广东疫情最新情况
  • 湖南省政府网站建设百度seo详解
  • 云主机配置网站查域名注册详细信息查询
  • 资讯网站开发需求学校seo推广培训班
  • 致力于做服务更好的网站建设公司企业培训平台
  • 网站网址模板seo具体怎么优化
  • 呼和浩特做网站的公司网络推广工作好吗
  • 长沙seo霜天搜索优化
  • 做的好的农产品网站有哪些千锋教育培训机构怎么样
  • wordpress 首页留言板广州seo优化电话
  • 国外的网站用不用备案百度免费收录提交入口
  • 建一个网站需要什么百度地址
  • 自己做淘宝返利网站吗做个电商平台要多少钱
  • 在线设计平台排行榜上海优化网站公司哪家好
  • 经监管部门seo的优化方向
  • 大学网站开发模板免费下载进入百度首页
  • win11 使用adb 获取安卓系统日志
  • Java环境配置之各类组件下载安装教程整理(jdk、idea、git、maven、mysql、redis)
  • io_uring:Linux异步I/O的革命性突破
  • OSPF开放式最短路径优先
  • Java 大视界 -- Java 大数据在智能家居能源管理与节能优化中的深度应用(361)
  • 快速梳理遗留项目