当前位置: 首页 > news >正文

杭州网站建设过程/搜狗网站收录提交入口

杭州网站建设过程,搜狗网站收录提交入口,中国vs菲律宾,中英文网站用一个域名还是两个域名利于优化本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测。 首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载): mnist input_data.read_data_sets(data/MNIST_dat…

本例子用到了minst数据库,通过训练CNN网络,实现手写数字的预测。

首先先把数据集读取到程序中(MNIST数据集大约12MB,如果没在文件夹中找到就会自动下载):

mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True)

Extracting data/MNIST/train-images-idx3-ubyte.gz
Extracting data/MNIST/train-labels-idx1-ubyte.gz
Extracting data/MNIST/t10k-images-idx3-ubyte.gz
Extracting data/MNIST/t10k-labels-idx1-ubyte.gz

print("Size of:")
print("- Training-set:\t\t{}".format(len(mnist.train.labels)))
print("- Test-set:\t\t{}".format(len(mnist.test.labels)))
print("- Validation-set:\t{}".format(len(mnist.validation.labels)))
Size of:
- Training-set: 55000
- Test-set: 10000

- Validation-set: 5000


然后开始定义输入数据,利用占位符

  • # define placeholder for inputs to network
    xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
    ys = tf.placeholder(tf.float32, [None, 10])
    keep_prob = tf.placeholder(tf.float32)
    x_image = tf.reshape(xs, [-1, 28, 28, 1])
    # print(x_image.shape)  # [n_samples, 28,28,1]

minst数据集中是28*28大小的图片,784就是一张展平的图片(28*28=784)。None表示输入图片的数量不定。类别是0-9总共10个类别,并定义了后面dropout的占位符。x_image又把展平的图片reshape成了28*28*1的形状,因为是灰色图片,所以通道是1.

然后定义几个函数来方便构造网络:

def weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)def conv2d(x, W):# stride [1, x_movement, y_movement, 1]# Must have strides[0] = strides[3] = 1return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')def max_pool_2x2(x):# stride [1, x_movement, y_movement, 1]return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')

truncated_normal函数使得W呈正态分布,标准差为0.1。初始化b为0.1。定义卷积层步数为1,并且周围补0。池化层采用kernel大小为2*2,步数也为2,周围补0。

然后定义CNN神经网络:

  • ## conv1 layer ##
    W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
    b_conv1 = bias_variable([32])
    h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
    h_pool1 = max_pool_2x2(h_conv1)                                         # output size 14x14x32## conv2 layer ##
    W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
    b_conv2 = bias_variable([64])
    h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
    h_pool2 = max_pool_2x2(h_conv2)                                         # output size 7x7x64## func1 layer ##
    W_fc1 = weight_variable([7*7*64, 1024])
    b_fc1 = bias_variable([1024])
    # [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
    h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
    h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
    h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)## func2 layer ##
    W_fc2 = weight_variable([1024, 10])
    b_fc2 = bias_variable([10])
    prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)

最后计算损失,使得损失最小。

# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)

reduce_mean用于计算均值,用法如下: 
tf.reduce_mean(input_tensor, reduction_indices=None, keep_dims=False, name=None)

Computes the mean of elements across dimensions of a tensor.

# 'x' is [[1., 1.]
#         [2., 2.]]
tf.reduce_mean(x) ==> 1.5
tf.reduce_mean(x, 0) ==> [1.5, 1.5]
tf.reduce_mean(x, 1) ==> [1.,  2.]

完整代码如下:

from __future__ import print_function
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
# number 1 to 10 data
mnist = input_data.read_data_sets('data/MNIST_data', one_hot=True)
def compute_accuracy(v_xs, v_ys):global predictiony_pre = sess.run(prediction, feed_dict={xs: v_xs, keep_prob: 1})correct_prediction = tf.equal(tf.argmax(y_pre,1), tf.argmax(v_ys,1))accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))result = sess.run(accuracy, feed_dict={xs: v_xs, ys: v_ys, keep_prob: 1})return resultdef weight_variable(shape):initial = tf.truncated_normal(shape, stddev=0.1)return tf.Variable(initial)def bias_variable(shape):initial = tf.constant(0.1, shape=shape)return tf.Variable(initial)def conv2d(x, W):# stride [1, x_movement, y_movement, 1]# Must have strides[0] = strides[3] = 1return tf.nn.conv2d(x, W, strides=[1, 1, 1, 1], padding='SAME')def max_pool_2x2(x):# stride [1, x_movement, y_movement, 1]return tf.nn.max_pool(x, ksize=[1,2,2,1], strides=[1,2,2,1], padding='SAME')# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 784]) # 28x28
ys = tf.placeholder(tf.float32, [None, 10])
keep_prob = tf.placeholder(tf.float32)
x_image = tf.reshape(xs, [-1, 28, 28, 1])
# print(x_image.shape)  # [n_samples, 28,28,1]## conv1 layer ##
W_conv1 = weight_variable([5,5, 1,32]) # patch 5x5, in size 1, out size 32
b_conv1 = bias_variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image, W_conv1) + b_conv1) # output size 28x28x32
h_pool1 = max_pool_2x2(h_conv1)                                         # output size 14x14x32## conv2 layer ##
W_conv2 = weight_variable([5,5, 32, 64]) # patch 5x5, in size 32, out size 64
b_conv2 = bias_variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1, W_conv2) + b_conv2) # output size 14x14x64
h_pool2 = max_pool_2x2(h_conv2)                                         # output size 7x7x64## func1 layer ##
W_fc1 = weight_variable([7*7*64, 1024])
b_fc1 = bias_variable([1024])
# [n_samples, 7, 7, 64] ->> [n_samples, 7*7*64]
h_pool2_flat = tf.reshape(h_pool2, [-1, 7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat, W_fc1) + b_fc1)
h_fc1_drop = tf.nn.dropout(h_fc1, keep_prob)## func2 layer ##
W_fc2 = weight_variable([1024, 10])
b_fc2 = bias_variable([10])
prediction = tf.nn.softmax(tf.matmul(h_fc1_drop, W_fc2) + b_fc2)# the error between prediction and real data
cross_entropy = tf.reduce_mean(-tf.reduce_sum(ys * tf.log(prediction),reduction_indices=[1]))       # loss
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy)sess = tf.Session()
# important step
sess.run(tf.initialize_all_variables())for i in range(1000):batch_xs, batch_ys = mnist.train.next_batch(100)sess.run(train_step, feed_dict={xs: batch_xs, ys: batch_ys, keep_prob: 0.5})if i % 50 == 0:print(compute_accuracy(mnist.test.images, mnist.test.labels))

http://www.lbrq.cn/news/1275139.html

相关文章:

  • 遵义水网站建设/百度推广竞价排名
  • jsp技术做网站有什么特点/线上网络平台推广
  • 枣庄市网站建设/指数分布的期望和方差
  • 手机网站flash/seo站内优化技巧
  • php网站开发账号密码/如何给公司做网络推广
  • 07年做网站/输入关键词自动生成标题
  • 幼儿园网站建设情况/2345网址导航电脑版
  • js图片展示网站/南昌关键词优化软件
  • 网页制作与网站建设实战大全/百度爱采购优化软件
  • 自己怎么做免费网站空间/市场营销活动策划方案
  • 网站的分辨率是多少/推广员是做什么的
  • 做微博网站/seo关键词词库
  • 信访举报网站建设情况总结/seo优化是指
  • wordpress电视主题/百度站长工具seo综合查询
  • 锦州网站建设最独特/windows11优化大师
  • 温州快建网站/河源新闻最新消息
  • 滑县住房城乡建设厅门户网站/湖南seo推广系统
  • 做网站去哪里/线上推广宣传方式有哪些
  • 网站 如何做用户统计/百度网址入口
  • 人妖和美女做视频网站/深圳高端seo外包公司
  • 网站开发流程可规划为那三个阶段/seo站长工具查询系统
  • 装饰公司网站建设/百度搜索量查询
  • 广告公司的网站建设价格/app制作公司
  • 网站关键词布局图/百度一下你就知道网页
  • 小区服务网站开发论文/百度地图疫情实时动态
  • 商丘市建立网站公司/seo搜索引擎优化平台
  • asp网站出现乱码/百度知道问答
  • 网络营销seo优化/seo手机端排名软件
  • 做动态logo网站/软文模板app
  • 一般做个网站多少钱/国家大事新闻近三天
  • 人工智能与金融:金融服务的重塑
  • Pycaita二次开发基础代码解析:几何体重命名与参数提取技术
  • MAC 升级 Ruby 到 3.2.0 或更高版本
  • Flux.1系列模型解析--Flux.1
  • Python单例类、元类详解
  • Kubernetes 应用部署实战:为什么需要 Kubernetes?