做公司网站备案可以个人/如何提升网站搜索排名
线程池
文章目录
- 线程池
- 线程池概述
- 创建一个线程池并提交线程任务
- 线程池源码解析
- 参数认识
- 构造方法
- 提交任务
- addWorker
- 执行任务
- 关闭线程池
线程池概述
-
什么是线程池
-
为什么使用线程池
-
线程池的优势
-
第一:降低资源消耗。通过重复利用已创建的线程降低线程创建和销毁造成的消耗。
-
第二:提高响应速度。当任务到达时,任务可以不需要的等到线程创建就能立即执行。
-
第三:提高线程的可管理性。线程是稀缺资源,如果无限制的创建,不仅会消耗系统资源,还会降低系统的稳定性,使用线程池可以进行统一的分配,调优和监控。但是要做到合理的利用线程池,必须对其原理了如指掌。
-
创建一个线程池并提交线程任务
线程池源码解析
参数认识
-
corePoolSize : 线程池的基本大小,当提交一个任务到线程池时,线程池会创建一个线程来执行任务,即使其他空闲的基本线程能够执行新任务也会创建线程,等到需要执行的任务数大于线程池基本大小时就不再创建。如果调用了线程池的prestartAllCoreThreads方法,线程池会提前创建并启动所有基本线程。
-
runnableTaskQueue:任务对列,用于保存等待执行的任务的阻塞队列。可以选择以下几个阻塞队列。
-
ArrayBlockingQueue:是一个基于数组结构的有界阻塞队列,此队列按 FIFO(先进先出)原则对元素进行排序。
-
LinkedBlockingQueue:一个基于链表结构的阻塞队列,此队列按FIFO (先进先出) 排序元素,吞吐量通常要高于ArrayBlockingQueue。静态工厂方法Executors.newFixedThreadPool()使用了这个队列。
-
SynchronousQueue:一个不存储元素的阻塞队列。每个插入操作必须等到另一个线程调用移除操作,否则插入操作一直处于阻塞状态,吞吐量通常要高于LinkedBlockingQueue,静态工厂方法Executors.newCachedThreadPool使用了这个队列。
-
PriorityBlockingQueue:一个具有优先级得无限阻塞队列。
-
maximumPoolSize:线程池最大大小,线程池允许创建的最大线程数。如果队列满了,并且已创建的线程数小于最大线程数,则线程池会再创建新的线程执行任务。值得注意的是如果使用了无界的任务队列这个参数就没什么效果。
-
ThreadFactory:用于设置创建线程的工厂,可以通过线程工厂给每个创建出来的线程设置更有意义的名字,Debug和定位问题时非常又帮助。
-
RejectedExecutionHandler(饱和策略):当队列和线程池都满了,说明线程池处于饱和状态,那么必须采取一种策略处理提交的新任务。这个策略默认情况下是AbortPolicy,表示无法处理新任务时抛出异常。
-
CallerRunsPolicy:只用调用者所在线程来运行任务。
-
DiscardOldestPolicy:丢弃队列里最近的一个任务,并执行当前任务。
-
DiscardPolicy:不处理,丢弃掉。
-
当然也可以根据应用场景需要来实现RejectedExecutionHandler接口自定义策略。如记录日志或持久化不能处理的任务。
-
keepAliveTime :线程活动保持时间,线程池的工作线程空闲后,保持存活的时间。所以如果任务很多,并且每个任务执行的时间比较短,可以调大这个时间,提高线程的利用率。
-
TimeUnit:线程活动保持时间的单位,可选的单位有天(DAYS),小时(HOURS),分钟(MINUTES),毫秒(MILLISECONDS),微秒(MICROSECONDS, 千分之一毫秒)和毫微秒(NANOSECONDS, 千分之一微秒)。
-
类中其他属性
// 线程池的控制状态:用来表示线程池的运行状态(整型的高3位)和运行的worker数量(低29位)private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0));// 29位的偏移量private static final int COUNT_BITS = Integer.SIZE - 3;// 最大容量(2^29 - 1)private static final int CAPACITY = (1 << COUNT_BITS) - 1;// runState is stored in the high-order bits// 线程运行状态,总共有5个状态,需要3位来表示(所以偏移量的29 = 32 - 3)/*** RUNNING : 接受新任务并且处理已经进入阻塞队列的任务* SHUTDOWN : 不接受新任务,但是处理已经进入阻塞队列的任务* STOP : 不接受新任务,不处理已经进入阻塞队列的任务并且中断正在运行的任务* TIDYING : 所有的任务都已经终止,workerCount为0, 线程转化为TIDYING状态并且调用terminated钩子函数* TERMINATED: terminated钩子函数已经运行完成**/private static final int RUNNING = -1 << COUNT_BITS;private static final int SHUTDOWN = 0 << COUNT_BITS;private static final int STOP = 1 << COUNT_BITS;private static final int TIDYING = 2 << COUNT_BITS;private static final int TERMINATED = 3 << COUNT_BITS;// 阻塞队列private final BlockingQueue<Runnable> workQueue;// 可重入锁private final ReentrantLock mainLock = new ReentrantLock();// 存放工作线程集合private final HashSet<Worker> workers = new HashSet<Worker>();// 终止条件private final Condition termination = mainLock.newCondition();// 最大线程池容量private int largestPoolSize;// 已完成任务数量private long completedTaskCount;// 线程工厂private volatile ThreadFactory threadFactory;// 拒绝执行处理器private volatile RejectedExecutionHandler handler;// 线程等待运行时间private volatile long keepAliveTime;// 是否运行核心线程超时private volatile boolean allowCoreThreadTimeOut;// 核心池的大小private volatile int corePoolSize;// 最大线程池大小private volatile int maximumPoolSize;// 默认拒绝执行处理器private static final RejectedExecutionHandler defaultHandler =new AbortPolicy();
构造方法
public ThreadPoolExecutor(int corePoolSize,int maximumPoolSize,long keepAliveTime,TimeUnit unit,BlockingQueue<Runnable> workQueue,ThreadFactory threadFactory,RejectedExecutionHandler handler) {if (corePoolSize < 0 || // 核心大小不能小于0maximumPoolSize <= 0 || // 线程池的初始最大容量不能小于0maximumPoolSize < corePoolSize || // 初始最大容量不能小于核心大小keepAliveTime < 0) // keepAliveTime不能小于0throw new IllegalArgumentException(); if (workQueue == null || threadFactory == null || handler == null)throw new NullPointerException();// 初始化相应的域this.corePoolSize = corePoolSize;this.maximumPoolSize = maximumPoolSize;this.workQueue = workQueue;this.keepAliveTime = unit.toNanos(keepAliveTime);this.threadFactory = threadFactory;this.handler = handler;}
提交任务
/*
* 进行下面三步
*
* 1. 如果运行的线程小于corePoolSize,则尝试使用用户定义的Runnalbe对象创建一个新的线程
* 调用addWorker函数会原子性的检查runState和workCount,通过返回false来防止在不应
* 该添加线程时添加了线程
* 2. 如果一个任务能够成功入队列,在添加一个线城时仍需要进行双重检查(因为在前一次检查后
* 该线程死亡了),或者当进入到此方法时,线程池已经shutdown了,所以需要再次检查状态,
* 若有必要,当停止时还需要回滚入队列操作,或者当线程池没有线程时需要创建一个新线程
* 3. 如果无法入队列,那么需要增加一个新线程,如果此操作失败,那么就意味着线程池已经shut
* down或者已经饱和了,所以拒绝任务
*/
public void execute(Runnable command) {if (command == null)throw new NullPointerException();// 获取线程池控制状态int c = ctl.get();if (workerCountOf(c) < corePoolSize) { // worker数量小于corePoolSizeif (addWorker(command, true)) // 添加worker// 成功则返回return;// 不成功则再次获取线程池控制状态c = ctl.get();}// 线程池处于RUNNING状态,将用户自定义的Runnable对象添加进workQueue队列if (isRunning(c) && workQueue.offer(command)) { // 再次检查,获取线程池控制状态int recheck = ctl.get();// 线程池不处于RUNNING状态,将自定义任务从workQueue队列中移除if (! isRunning(recheck) && remove(command)) // 拒绝执行命令reject(command);else if (workerCountOf(recheck) == 0) // worker数量等于0// 添加workeraddWorker(null, false);}else if (!addWorker(command, false)) // 添加worker失败// 拒绝执行命令reject(command);
}
addWorker
-
原子性的增加workerCount。
-
将用户给定的任务封装成为一个worker,并将此worker添加进workers集合中。
-
启动worker对应的线程,并启动该线程,运行worker的run方法。
-
回滚worker的创建动作,即将worker从workers集合中删除,并原子性的减少workerCount。
private boolean addWorker(Runnable firstTask, boolean core) {retry:for (;;) { // 外层无限循环// 获取线程池控制状态int c = ctl.get();// 获取状态int rs = runStateOf(c);// Check if queue empty only if necessary.if (rs >= SHUTDOWN && // 状态大于等于SHUTDOWN,初始的ctl为RUNNING,小于SHUTDOWN! (rs == SHUTDOWN && // 状态为SHUTDOWNfirstTask == null && // 第一个任务为null! workQueue.isEmpty())) // worker队列不为空// 返回return false;for (;;) {// worker数量int wc = workerCountOf(c);if (wc >= CAPACITY || // worker数量大于等于最大容量wc >= (core ? corePoolSize : maximumPoolSize)) // worker数量大于等于核心线程池大小或者最大线程池大小return false;if (compareAndIncrementWorkerCount(c)) // 比较并增加worker的数量// 跳出外层循环break retry;// 获取线程池控制状态c = ctl.get(); // Re-read ctlif (runStateOf(c) != rs) // 此次的状态与上次获取的状态不相同// 跳过剩余部分,继续循环continue retry;// else CAS failed due to workerCount change; retry inner loop}}// worker开始标识boolean workerStarted = false;// worker被添加标识boolean workerAdded = false;// Worker w = null;try {// 初始化workerw = new Worker(firstTask);// 获取worker对应的线程final Thread t = w.thread;if (t != null) { // 线程不为null// 线程池锁final ReentrantLock mainLock = this.mainLock;// 获取锁mainLock.lock();try {// Recheck while holding lock.// Back out on ThreadFactory failure or if// shut down before lock acquired.// 线程池的运行状态int rs = runStateOf(ctl.get());if (rs < SHUTDOWN || // 小于SHUTDOWN(rs == SHUTDOWN && firstTask == null)) { // 等于SHUTDOWN并且firstTask为nullif (t.isAlive()) // precheck that t is startable // 线程刚添加进来,还未启动就存活// 抛出线程状态异常throw new IllegalThreadStateException();// 将worker添加到worker集合workers.add(w);// 获取worker集合的大小int s = workers.size();if (s > largestPoolSize) // 队列大小大于largestPoolSize// 重新设置largestPoolSizelargestPoolSize = s;// 设置worker已被添加标识workerAdded = true;}} finally {// 释放锁mainLock.unlock();}if (workerAdded) { // worker被添加// 开始执行worker的run方法t.start();// 设置worker已开始标识workerStarted = true;}}} finally {if (! workerStarted) // worker没有开始// 添加worker失败addWorkerFailed(w);}return workerStarted;
}
执行任务
runWorker函数中会实际执行给定任务(即调用用户重写的run方法),并且当给定任务完成后,会继续从阻塞队列中取任务,直到阻塞队列为空(即任务全部完成)。在执行给定任务时,会调用钩子函数,利用钩子函数可以完成用户自定义的一些逻辑。在runWorker中会调用到getTask函数和processWorkerExit钩子函数
final void runWorker(Worker w) {// 获取当前线程Thread wt = Thread.currentThread();// 获取w的firstTaskRunnable task = w.firstTask;// 设置w的firstTask为nullw.firstTask = null;// 释放锁(设置state为0,允许中断)w.unlock(); // allow interruptsboolean completedAbruptly = true;try {while (task != null || (task = getTask()) != null) { // 任务不为null或者阻塞队列还存在任务// 获取锁w.lock();// If pool is stopping, ensure thread is interrupted;// if not, ensure thread is not interrupted. This// requires a recheck in second case to deal with// shutdownNow race while clearing interruptif ((runStateAtLeast(ctl.get(), STOP) || // 线程池的运行状态至少应该高于STOP(Thread.interrupted() && // 线程被中断runStateAtLeast(ctl.get(), STOP))) && // 再次检查,线程池的运行状态至少应该高于STOP!wt.isInterrupted()) // wt线程(当前线程)没有被中断wt.interrupt(); // 中断wt线程(当前线程)try {// 在执行之前调用钩子函数beforeExecute(wt, task);Throwable thrown = null;try {// 运行给定的任务task.run();} catch (RuntimeException x) {thrown = x; throw x;} catch (Error x) {thrown = x; throw x;} catch (Throwable x) {thrown = x; throw new Error(x);} finally {// 执行完后调用钩子函数afterExecute(task, thrown);}} finally {task = null;// 增加给worker完成的任务数量w.completedTasks++;// 释放锁w.unlock();}}completedAbruptly = false;} finally {// 处理完成后,调用钩子函数processWorkerExit(w, completedAbruptly);}
}
此函数用于从workerQueue阻塞队列中获取Runnable对象,由于是阻塞队列,所以支持有限时间等待(poll)和无限时间等待(take)。在该函数中还会响应shutDown和、shutDownNow函数的操作,若检测到线程池处于SHUTDOWN或STOP状态,则会返回null,而不再返回阻塞队列中的Runnalbe对象。
private Runnable getTask() {boolean timedOut = false; // Did the last poll() time out?for (;;) { // 无限循环,确保操作成功// 获取线程池控制状态int c = ctl.get();// 运行的状态int rs = runStateOf(c);// Check if queue empty only if necessary.if (rs >= SHUTDOWN && (rs >= STOP || workQueue.isEmpty())) { // 大于等于SHUTDOWN(表示调用了shutDown)并且(大于等于STOP(调用了shutDownNow)或者worker阻塞队列为空)// 减少worker的数量decrementWorkerCount();// 返回null,不执行任务return null;}// 获取worker数量int wc = workerCountOf(c);// Are workers subject to culling?boolean timed = allowCoreThreadTimeOut || wc > corePoolSize; // 是否允许coreThread超时或者workerCount大于核心大小if ((wc > maximumPoolSize || (timed && timedOut)) // worker数量大于maximumPoolSize&& (wc > 1 || workQueue.isEmpty())) { // workerCount大于1或者worker阻塞队列为空(在阻塞队列不为空时,需要保证至少有一个wc)if (compareAndDecrementWorkerCount(c)) // 比较并减少workerCount// 返回null,不执行任务,该worker会退出return null;// 跳过剩余部分,继续循环continue;}try {Runnable r = timed ?workQueue.poll(keepAliveTime, TimeUnit.NANOSECONDS) : // 等待指定时间workQueue.take(); // 一直等待,直到有元素if (r != null)return r;// 等待指定时间后,没有获取元素,则超时timedOut = true;} catch (InterruptedException retry) {// 抛出了被中断异常,重试,没有超时timedOut = false;}}}
processWorkerExit函数是在worker退出时调用到的钩子函数,而引起worker退出的主要因素如下
-
阻塞队列已经为空,即没有任务可以运行了。
-
调用了shutDown或shutDownNow函数
此函数会根据是否中断了空闲线程来确定是否减少workerCount的值,并且将worker从workers集合中移除并且会尝试终止线程池。
private void processWorkerExit(Worker w, boolean completedAbruptly) {if (completedAbruptly) // 如果被中断,则需要减少workCount // If abrupt, then workerCount wasn't adjusteddecrementWorkerCount();// 获取可重入锁final ReentrantLock mainLock = this.mainLock;// 获取锁mainLock.lock();try {// 将worker完成的任务添加到总的完成任务中completedTaskCount += w.completedTasks;// 从workers集合中移除该workerworkers.remove(w);} finally {// 释放锁mainLock.unlock();}// 尝试终止tryTerminate();// 获取线程池控制状态int c = ctl.get();if (runStateLessThan(c, STOP)) { // 小于STOP的运行状态if (!completedAbruptly) {int min = allowCoreThreadTimeOut ? 0 : corePoolSize;if (min == 0 && ! workQueue.isEmpty()) // 允许核心超时并且workQueue阻塞队列不为空min = 1;if (workerCountOf(c) >= min) // workerCount大于等于min// 直接返回return; // replacement not needed}// 添加workeraddWorker(null, false);}}
关闭线程池
public void shutdown() {final ReentrantLock mainLock = this.mainLock;mainLock.lock();try {// 检查shutdown权限checkShutdownAccess();// 设置线程池控制状态为SHUTDOWNadvanceRunState(SHUTDOWN);// 中断空闲workerinterruptIdleWorkers();// 调用shutdown钩子函数onShutdown(); // hook for ScheduledThreadPoolExecutor} finally {mainLock.unlock();}// 尝试终止tryTerminate();}
final void tryTerminate() {for (;;) { // 无限循环,确保操作成功// 获取线程池控制状态int c = ctl.get();if (isRunning(c) || // 线程池的运行状态为RUNNINGrunStateAtLeast(c, TIDYING) || // 线程池的运行状态最小要大于TIDYING(runStateOf(c) == SHUTDOWN && ! workQueue.isEmpty())) // 线程池的运行状态为SHUTDOWN并且workQueue队列不为null// 不能终止,直接返回return;if (workerCountOf(c) != 0) { // 线程池正在运行的worker数量不为0 // Eligible to terminate// 仅仅中断一个空闲的workerinterruptIdleWorkers(ONLY_ONE);return;}// 获取线程池的锁final ReentrantLock mainLock = this.mainLock;// 获取锁mainLock.lock();try {if (ctl.compareAndSet(c, ctlOf(TIDYING, 0))) { // 比较并设置线程池控制状态为TIDYINGtry {// 终止,钩子函数terminated();} finally {// 设置线程池控制状态为TERMINATEDctl.set(ctlOf(TERMINATED, 0));// 释放在termination条件上等待的所有线程termination.signalAll();}return;}} finally {// 释放锁mainLock.unlock();}// else retry on failed CAS}}
private void interruptIdleWorkers(boolean onlyOne) {// 线程池的锁final ReentrantLock mainLock = this.mainLock;// 获取锁mainLock.lock();try {for (Worker w : workers) { // 遍历workers队列// worker对应的线程Thread t = w.thread;if (!t.isInterrupted() && w.tryLock()) { // 线程未被中断并且成功获得锁try {// 中断线程t.interrupt();} catch (SecurityException ignore) {} finally {// 释放锁w.unlock();}}if (onlyOne) // 若只中断一个,则跳出循环break;}} finally {// 释放锁mainLock.unlock();}}