博罗网站建设公司/宁德市高中阶段招生信息平台
本文首发于微信公众号“计算机视觉”
softmax的基本概念
- 分类问题
softmax函数主要是用于分类问题,一般在全连接层后面使用。 - 权重矢量
- 神经网络图
softmax回归同线性回归一样,也是一个单层神经网络。由于每个输出的计算都要依赖于所有的输入
,示例如下图所示:

既然分类问题需要得到离散的预测输出,一个简单的办法是将输出值
softmax运算符(softmax operator)解决了以上两个问题。它通过下式将输出值变换成值为正且和为1的概率分布:
其中
容易看出
因此softmax运算不改变预测类别输出。softmax回归对样本
- 小批量矢量计算表达式
广义上讲,给定一个小批量样本,其批量大小为,输入个数(特征数)为
,输出个数(类别数)为
。设批量特征为
。假设softmax回归的权重和偏差参数分别为
和
。softmax回归的矢量计算表达式为
其中的加法运算使用了广播机制,
交叉熵损失函数
对于样本
- 平方损失估计
交叉熵(cross entropy)是一个常用的衡量方法:
其中带下标的
假设训练数据集的样本数为
其中
模型训练与预测
获取Fashion-MNIST训练集和读取数据
图像分类数据集中最常用的是手写数字识别数据集MNIST[1]。但大部分模型在MNIST上的分类精度都超过了95%。为了更直观地观察算法之间的差异,我们将使用一个图像内容更加复杂的数据集Fashion-MNIST[2]。
我这里我们会使用torchvision包,主要用来构建计算机视觉模型。torchvision主要由以下几部分构成:
- torchvision.datasets: 一些加载数据的函数及常用的数据集接口;
- torchvision.models: 包含常用的模型结构(含预训练模型),例如AlexNet、VGG、ResNet等;
- torchvision.transforms: 常用的图片变换,例如裁剪、旋转等;
- torchvision.utils: 其他的一些有用的方法。
%matplotlib inline
from IPython import display
import matplotlib.pyplot as pltimport torch
import torchvision
import torchvision.transforms as transforms
import timeimport sys
sys.path.append("/home/input")
import d2lzh1981 as d2l
#获取数据
mnist_train = torchvision.datasets.FashionMNIST(root='/home/input/FashionMNIST2065', train=True, download=True, transform=transforms.ToTensor())
mnist_test = torchvision.datasets.FashionMNIST(root='/home/input/FashionMNIST2065', train=False, download=True, transform=transforms.ToTensor())
class torchvision.datasets.FashionMNIST(root, train=True, transform=None, target_transform=None, download=False)
- root(string)– 数据集的根目录,其中存放processed/training.pt和processed/test.pt文件。
- train(bool, 可选)– 如果设置为True,从training.pt创建数据集,否则从test.pt创建。
- download(bool, 可选)– 如果设置为True,从互联网下载数据并放到root文件夹下。如果root目录下已经存在数据,不会再次下载。
- transform(可被调用 , 可选)– 一种函数或变换,输入PIL图片,返回变换之后的数据。如:transforms.RandomCrop。
- target_transform(可被调用 , 可选)– 一种函数或变换,输入目标,进行变换。
#显示结果
print(type(mnist_train))
print(len(mnist_train), len(mnist_test))
输出:<class 'torchvision.datasets.mnist.FashionMNIST'> 60000 10000
# 我们可以通过下标来访问任意一个样本
feature, label = mnist_train[0]
print(feature.shape, label) # Channel x Height x Width
输出torch.Size([1, 28, 28]) 9
mnist_PIL = torchvision.datasets.FashionMNIST(root='/home/kesci/input/FashionMNIST2065', train=True, download=True)
PIL_feature, label = mnist_PIL[0]
# 本函数已保存在d2lzh包中方便以后使用
def get_fashion_mnist_labels(labels):text_labels = ['t-shirt', 'trouser', 'pullover', 'dress', 'coat','sandal', 'shirt', 'sneaker', 'bag', 'ankle boot']return [text_labels[int(i)] for i in labels]
def show_fashion_mnist(images, labels):d2l.use_svg_display()# 这里的_表示我们忽略(不使用)的变量_, figs = plt.subplots(1, len(images), figsize=(12, 12))for f, img, lbl in zip(figs, images, labels):f.imshow(img.view((28, 28)).numpy())f.set_title(lbl)f.axes.get_xaxis().set_visible(False)f.axes.get_yaxis().set_visible(False)plt.show()
X, y = [], []
for i in range(10):X.append(mnist_train[i][0]) # 将第i个feature加到X中y.append(mnist_train[i][1]) # 将第i个label加到y中
show_fashion_mnist(X, get_fashion_mnist_labels(y))
输出:

# 读取数据
batch_size = 256
num_workers = 4
train_iter = torch.utils.data.DataLoader(mnist_train, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_iter = torch.utils.data.DataLoader(mnist_test, batch_size=batch_size, shuffle=False, num_workers=num_workers)
softmax从零开始的实现
import torch
import torchvision
import numpy as np
import sys
sys.path.append("/home/kesci/input")
import d2lzh1981 as d2l
#获取数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root='/home/input/FashionMNIST2065')
#模型参数初始化
num_inputs = 784
num_outputs = 10W = torch.tensor(np.random.normal(0, 0.01, (num_inputs, num_outputs)), dtype=torch.float)
b = torch.zeros(num_outputs, dtype=torch.float)
W.requires_grad_(requires_grad=True)
b.requires_grad_(requires_grad=True)
输出:tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)
对多维Tensor按维度操作
X = torch.tensor([[1, 2, 3], [4, 5, 6]])
print(X.sum(dim=0, keepdim=True)) # dim为0,按照相同的列求和,并在结果中保留列特征
print(X.sum(dim=1, keepdim=True)) # dim为1,按照相同的行求和,并在结果中保留行特征
print(X.sum(dim=0, keepdim=False)) # dim为0,按照相同的列求和,不在结果中保留列特征
print(X.sum(dim=1, keepdim=False)) # dim为1,按照相同的行求和,不在结果中保留行特征
输出:tensor([[5, 7, 9]]) tensor([[ 6], [15]]) tensor([5, 7, 9]) tensor([ 6, 15])
定义softmax操作
def softmax(X):X_exp = X.exp()partition = X_exp.sum(dim=1, keepdim=True)#print("X size is ", X_exp.size())#print("partition size is ", partition, partition.size())return X_exp / partition # 这里应用了广播机制
X = torch.rand((2, 5))
X_prob = softmax(X)
print(X_prob, 'n', X_prob.sum(dim=1))
输出:tensor([[0.2767, 0.1386, 0.1364, 0.1738, 0.2746], [0.1855, 0.1690, 0.1513, 0.3168, 0.1774]]) tensor([1.0000, 1.0000])
softmax回归模型
def net(X):return softmax(torch.mm(X.view((-1, num_inputs)), W) + b)
定义损失函数
y_hat = torch.tensor([[0.1, 0.3, 0.6], [0.3, 0.2, 0.5]])
y = torch.LongTensor([0, 2])
y_hat.gather(1, y.view(-1, 1)) #1表示按行相加
def cross_entropy(y_hat, y):return - torch.log(y_hat.gather(1, y.view(-1, 1)))
定义准确率
def accuracy(y_hat, y):return (y_hat.argmax(dim=1) == y).float().mean().item() #y_hat按行取最大的值与y比较# 本函数已保存在d2lzh_pytorch包中方便以后使用。该函数将被逐步改进:它的完整实现将在“图像增广”一节中描述
def evaluate_accuracy(data_iter, net): #data_iter是取数据的,net是网络acc_sum, n = 0.0, 0for X, y in data_iter:acc_sum += (net(X).argmax(dim=1) == y).float().sum().item()n += y.shape[0]return acc_sum / n
训练模型
num_epochs, lr = 5, 0.1# 本函数已保存在d2lzh_pytorch包中方便以后使用
def train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size,params=None, lr=None, optimizer=None):for epoch in range(num_epochs):train_l_sum, train_acc_sum, n = 0.0, 0.0, 0for X, y in train_iter:y_hat = net(X)l = loss(y_hat, y).sum()# 梯度清零if optimizer is not None:optimizer.zero_grad()elif params is not None and params[0].grad is not None:for param in params:param.grad.data.zero_()l.backward()if optimizer is None:d2l.sgd(params, lr, batch_size)else:optimizer.step() train_l_sum += l.item()train_acc_sum += (y_hat.argmax(dim=1) == y).sum().item()n += y.shape[0]test_acc = evaluate_accuracy(test_iter, net)print('epoch %d, loss %.4f, train acc %.3f, test acc %.3f'% (epoch + 1, train_l_sum / n, train_acc_sum / n, test_acc))train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size, [W, b], lr)

模型预测
X, y = iter(test_iter).next()true_labels = d2l.get_fashion_mnist_labels(y.numpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(dim=1).numpy())
titles = [true + 'n' + pred for true, pred in zip(true_labels, pred_labels)]d2l.show_fashion_mnist(X[0:9], titles[0:9])

softmax的简洁实现
# 加载各种包或者模块
import torch
from torch import nn
from torch.nn import init
import numpy as np
import sys
sys.path.append("/home/input")
import d2lzh1981 as d2l
#初始化
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size, root='/home/input/FashionMNIST2065')
#定义网络模型
num_inputs = 784
num_outputs = 10class LinearNet(nn.Module):def __init__(self, num_inputs, num_outputs):super(LinearNet, self).__init__()self.linear = nn.Linear(num_inputs, num_outputs)def forward(self, x): # x 的形状: (batch, 1, 28, 28)y = self.linear(x.view(x.shape[0], -1))return y# net = LinearNet(num_inputs, num_outputs)class FlattenLayer(nn.Module):def __init__(self):super(FlattenLayer, self).__init__()def forward(self, x): # x 的形状: (batch, *, *, ...)return x.view(x.shape[0], -1)from collections import OrderedDict
net = nn.Sequential(# FlattenLayer(),# LinearNet(num_inputs, num_outputs) OrderedDict([('flatten', FlattenLayer()),('linear', nn.Linear(num_inputs, num_outputs))]) # 或者写成我们自己定义的 LinearNet(num_inputs, num_outputs) 也可以)
#初始化模型参数
init.normal_(net.linear.weight, mean=0, std=0.01)
init.constant_(net.linear.bias, val=0)
loss = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.1)
num_epochs = 5
d2l.train_ch3(net, train_iter, test_iter, loss, num_epochs, batch_size, None, None, optimizer)
