当前位置: 首页 > news >正文

网络工程专业毕业论文宁波seo免费优化软件

网络工程专业毕业论文,宁波seo免费优化软件,哪里可以找人做网站,如何建设合法的网站在数学建模竞赛中,优化类题目是一个非常重要领域,占比一半以上。优化类问题相对要难一些,主要就难在模型求解部分,本文来给大家介绍一些MATLAB求解数学规划模型的案例。1、如何建立优化模型?为了更直接地说明问题&…

df6be0d9b97d0117b81c763383a2ea24.png

在数学建模竞赛中,优化类题目是一个非常重要领域,占比一半以上。

优化类问题相对要难一些,主要就难在模型求解部分,本文来给大家介绍一些MATLAB求解数学规划模型的案例。

1、如何建立优化模型?

为了更直接地说明问题,我们先来看几个例子:

问题一:某工厂在计划期内要安排生产 I、II 两种产品,已知生产单位产品所需的设备台时及A、B两种原材料的消耗,如下表所示 

9a8dcc86ac8e5e73c853ec0bc9c21b68.png

该工厂每生产一件产品I可获利2元,每生产一件产品II可获利3元。问应如何安排计划使该工厂获利最多?

所谓最优化问题是指使得问题中某一项指标“最优”的方案,”最优”包括:“最大”、“最小”、“最高”、“最低”、“最多”和“最少”等。解决优化问题第一步需要找到目标函数,也就是要找到“最优”;第二步需要寻找决策变量,也就是可以优化的变量,再通俗一点就是我们可以控制并使得目标函数更优的变量;第三步就是确定约束条件,在建模过程中比较难把握的就是约束条件,约束条件需要全面准确,否则会产生无穷多最优解或没有最优解,另外约束条件往往是对现实条件的数学刻画,对约束条件的合理简化也是比赛时候需要重点关注的地方。

在上面这个例子中,显然工厂利用就是目标函数,产品的生产计划就是决策变量,约束条件为原材料消耗和生产设备的使用时长,因此,其数学模型可表示为:

27a506227492694be126fa335ef6503a.png

其中,x1,x2表示产品1和产品2的生产数量。

进一步,我们可以来总结一下优化问题的一般建模步骤:

Step1:确定决策变量;

Step2:用关于决策变量的函数表示目标,并确定是求极小还是极大;

Step3:明确约束条件,并用关于决策变量的数学语言表示;

Step4:根据变量的物理性质研究变量是否有非负性。

特别说明一下step4,这是建模过程中非常容易遗忘的一个点,像上文例子的第四条约束就反应了决策变量的非负性,因为我们知道根据物理性质,产品生产个数不能为负,其实这条约束仍然不是很严谨,产品个数不仅不能为负,同时还应该为整数,第四条约束应该为非负整数约束。

2、MATLAB求解线性规划模型

简单来说,约束条件和目标函数都是线性的,称之为线性规划,MATLAB求解线性规划的标准形式表示为:

72f307cb017a5cbba7ecf6dd460d1f13.png

线性规划的求解可以通过MATLAB中的linprog函数来进行求解。其调用格式为:

[x,fval,exitflag] = linprog(fun,A,Aeq,beq,lb,ub,x0,options)

输入参数中,fun表示优化函数,x0表示优化的初始值,参数A、b为满足线性不等式约束的系数矩阵和结果向量,参数Aeq、beq为满足线性等式约束的系数矩阵和结果向量,lb、ub表示决策变量的取值范围,参数options为优化的各种属性,通过optimset函数进行设置。

输出参数中,x表示最优解,fval表示最优值,exitflag表示程序退出优化运算的类型,取值为-2,、-1、0、1、2、3、4、5,分别代表不同的异常类型,比如1表示程序运行成功。

1a50181510acffedaf98d54841c902e7.png

例程:

c=[-3,-2];A = [2,1;3,4;-3,2];b = [3;7;2];lb = [0;0];ub = [10;10];

[x,fval,exitflag] = linprog(c,A,b,[],[],lb,ub)

输出结果:

b7ecd6389ec2cb70fef8d00ced29ac05.png

3、MATLAB求解非线性规划模型

对于非线性无约束优化,在MATLAB中可以采用fminsearch函数和fminunc函数进行求解,其调用格式为:

[x,fval,exitflag,output] = fminsearch(fun,x0,options)

输入参数:fun表示需要优化的目标函数,x0表示执行优化的初始数值,参数options为有优化的各种属性。

输出参数:x表示最优解,fval表示最优解队形的函数值,exitflag表示退出运算的原因,1表示收敛于最优解,0表示函数迭代次数超过设定阈值,output为结构体变量,显示优化的有关信息。

[x,fval,exitflag,output,grad,hessian] = fminunc(fun,x0,options)

输出参数中grad表示函数在返回的最优解处的梯度,hessian为最优解处的hessian矩阵。

例:求解函数f(x) = 100(x2-x12)2+(1-x1)2

function f = myfun(x)

    f = 100*(x(2) - x(1)^2)^2 + (1-x(1))^2;

end

x0 = [-0,0];[x,fval,exitflag,output] = fminsearch(@myfun,x0)

83f00428278b670ba1101f4085bdd2cf.png

约束条件下的优化问题比无约束条件的优化问题要复杂的多,种类也比较多。对不同类型的优化问题,MATLAB提供了不同的优化方法。其中常用的是fmincon函数,调用格式为:

[x,fval,exitflag,output] = fmincon(fun,x0,A,b,Aeq,beq,lb,ub,options)

例:

71c802e66403ff602a6f3d87fae7c8e5.png

function f= optfun(x)

    f = -x(1)*x(2)*x(3);

End

x0 = [1,1,1];A = [1,2,2;0,1,0;0,0,1];b = [72;5;10];

[x,fval,exitflag,output] = fmincon(@optfun,x0,A,b)

b97db267942177c536d776f2a1f4c5d9.png

4、总结

本文介绍了优化问题的一般建模方法及MATLAB中求解线性规划和非线性规划的常用命令,对于非线性规划还可以采用基于梯度的算法、基于概率搜索的算法、遗传算法等进行求解,在后续的文章中会陆续进行介绍。

~相关文章~

数学建模中的优化问题

经典优化算法大合集(比赛备用,值得收藏)

优化算法系列——模拟退火算法(1)

优化算法系列——模拟退火算法(2)——0-1背包问题

优化算法系列——遗传算法原理

优化算法系列——遗传算法MATLAB实例

优化算法系列——粒子群算法

优化算法系列——蚁群算法

优化算法系列——贪心算法

优化算法系列——最速下降法

优化算法系列——牛顿法

优化算法系列——共轭梯度法

38337198ae9ebf9e8b21452748eea0a5.png
http://www.lbrq.cn/news/2687509.html

相关文章:

  • 企业 办公 网站模板地推接单平台网
  • seo综合查询工具可以查看哪些数据海淀区seo全面优化
  • 鸡西建设网站腾讯云服务器
  • 天津建设局网站首页营销型网站建设步骤
  • 廊坊网页模板建站站长工具百科
  • 做任务网站有哪些内容网络优化公司
  • 网站做301还是302seo研究协会网app
  • 如何写网站建设方案seo综合查询接口
  • 微信公众号的微网站怎么做的淘宝运营
  • ai做网站网站广告接入
  • 培训销售网站建设怀柔网站整站优化公司
  • 企业网站建设后需要单独服务器百度客服在线咨询人工服务
  • 大学生互助联盟网站建设需求分析说明表小米口碑营销案例
  • 好的网站分享百度seo软件首选帝搜软件
  • 网页设计素材图片免费百度seo优化教程免费
  • 动态网站后台开发关键词包括哪些内容
  • 中文网站建设工具郑州免费做网站
  • 山东助企网站建设必应搜索
  • 如何做网站左侧导航条广告语
  • 邵阳建设网站的公司优化英文
  • 做问卷赚钱的网站网站目录
  • 祖传做网站优化什么
  • 广州网络营销网站建设专业网站推广引流
  • 网站制度建设存在的问题中国国际新闻
  • 发布建设网站营销培训课程视频
  • 做网站什么科目百度注册公司地址
  • 网站用什么语言做seozhun
  • php建设网站后台市场营销专业
  • 合肥做网站的企业百度图片
  • 用自建网站做外贸只要做好关键词优化
  • Python函数篇:从零到精通
  • 熟悉并使用Spring框架 - 注解篇
  • golang的继承
  • 《嵌入式Linux应用编程(四):Linux文件IO系统调用深度解析》
  • 基于柔性管控终端的新能源汽车充电站有序充电系统设计与实现
  • 【网络运维】Linux和自动化: Ansible基础实践