当前位置: 首页 > news >正文

做信息安全的网站立即优化在哪里

做信息安全的网站,立即优化在哪里,最有效的网站推广方案,微信小程序游戏制作平台Dijkstra算法 1.定义概览 Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课…

Dijkstra算法

1.定义概览

Dijkstra(迪杰斯特拉)算法是典型的单源最短路径算法,用于计算一个节点到其他所有节点的最短路径。主要特点是以起始点为中心向外层层扩展,直到扩展到终点为止。Dijkstra算法是很有代表性的最短路径算法,在很多专业课程中都作为基本内容有详细的介绍,如数据结构,图论,运筹学等等。注意该算法要求图中不存在负权边。

问题描述:在无向图 G=(V,E) 中,假设每条边 E[i] 的长度为 w[i],找到由顶点 V0 到其余各点的最短路径。(单源最短路径)

 

2.算法描述

1)算法思想:设G=(V,E)是一个带权有向图,把图中顶点集合V分成两组,第一组为已求出最短路径的顶点集合(用S表示,初始时S中只有一个源点,以后每求得一条最短路径 , 就将加入到集合S中,直到全部顶点都加入到S中,算法就结束了),第二组为其余未确定最短路径的顶点集合(用U表示),按最短路径长度的递增次序依次把第二组的顶点加入S中。在加入的过程中,总保持从源点v到S中各顶点的最短路径长度不大于从源点v到U中任何顶点的最短路径长度。此外,每个顶点对应一个距离,S中的顶点的距离就是从v到此顶点的最短路径长度,U中的顶点的距离,是从v到此顶点只包括S中的顶点为中间顶点的当前最短路径长度。

2)算法步骤:

a.初始时,S只包含源点,即S={v},v的距离为0。U包含除v外的其他顶点,即:U={其余顶点},若v与U中顶点u有边,则<u,v>正常有权值,若u不是v的出边邻接点,则<u,v>权值为∞。

b.从U中选取一个距离v最小的顶点k,把k,加入S中(该选定的距离就是v到k的最短路径长度)。

c.以k为新考虑的中间点,修改U中各顶点的距离;若从源点v到顶点u的距离(经过顶点k)比原来距离(不经过顶点k)短,则修改顶点u的距离值,修改后的距离值的顶点k的距离加上边上的权。

d.重复步骤b和c直到所有顶点都包含在S中。

 

执行动画过程如下图

 

3.算法代码实现:

 

复制代码
const int  MAXINT = 32767;
const int MAXNUM = 10;
int dist[MAXNUM];
int prev[MAXNUM];int A[MAXUNM][MAXNUM];void Dijkstra(int v0)
{bool S[MAXNUM];                                  // 判断是否已存入该点到S集合中int n=MAXNUM;for(int i=1; i<=n; ++i){dist[i] = A[v0][i];S[i] = false;                                // 初始都未用过该点if(dist[i] == MAXINT)    prev[i] = -1;else prev[i] = v0;}dist[v0] = 0;S[v0] = true;   for(int i=2; i<=n; i++){int mindist = MAXINT;int u = v0;                               // 找出当前未使用的点j的dist[j]最小值for(int j=1; j<=n; ++j)if((!S[j]) && dist[j]<mindist){u = j;                             // u保存当前邻接点中距离最小的点的号码 mindist = dist[j];}S[u] = true; for(int j=1; j<=n; j++)if((!S[j]) && A[u][j]<MAXINT){if(dist[u] + A[u][j] < dist[j])     //在通过新加入的u点路径找到离v0点更短的路径  
                 {dist[j] = dist[u] + A[u][j];    //更新dist prev[j] = u;                    //记录前驱顶点 
                  }}}
}
复制代码

 

4.算法实例

先给出一个无向图

用Dijkstra算法找出以A为起点的单源最短路径步骤如下

 

Floyd算法

1.定义概览

Floyd-Warshall算法(Floyd-Warshall algorithm)是解决任意两点间的最短路径的一种算法,可以正确处理有向图或负权的最短路径问题,同时也被用于计算有向图的传递闭包。Floyd-Warshall算法的时间复杂度为O(N3),空间复杂度为O(N2)。

 

2.算法描述

1)算法思想原理:

     Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)

      从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

2).算法描述:

a.从任意一条单边路径开始。所有两点之间的距离是边的权,如果两点之间没有边相连,则权为无穷大。   

b.对于每一对顶点 u 和 v,看看是否存在一个顶点 w 使得从 u 到 w 再到 v 比己知的路径更短。如果是更新它。

3).Floyd算法过程矩阵的计算----十字交叉法

方法:两条线,从左上角开始计算一直到右下角 如下所示

给出矩阵,其中矩阵A是邻接矩阵,而矩阵Path记录u,v两点之间最短路径所必须经过的点

相应计算方法如下:

最后A3即为所求结果

 

3.算法代码实现

复制代码
typedef struct          
{        char vertex[VertexNum];                                //顶点表         int edges[VertexNum][VertexNum];                       //邻接矩阵,可看做边表         int n,e;                                               //图中当前的顶点数和边数         
}MGraph; void Floyd(MGraph g)
{int A[MAXV][MAXV];int path[MAXV][MAXV];int i,j,k,n=g.n;for(i=0;i<n;i++)for(j=0;j<n;j++){   A[i][j]=g.edges[i][j];path[i][j]=-1;}for(k=0;k<n;k++){ for(i=0;i<n;i++)for(j=0;j<n;j++)if(A[i][j]>(A[i][k]+A[k][j])){A[i][j]=A[i][k]+A[k][j];path[i][j]=k;} } 
} 
复制代码
http://www.lbrq.cn/news/2675017.html

相关文章:

  • 网站系统渗透测试报告网站的搜索引擎
  • 做ppt哪个网站的图片好英语seo
  • 网站建设初步规划书黑帽seo排名技术
  • 会计题库网站怎么做推广平台有哪些?
  • 百度网站优化升上去外贸seo建站
  • 做网站每年都要费用的吗曲靖seo建站
  • 仿中国加盟网站源码百度首页登录入口
  • 网站开发人员的职责百度开户需要什么条件
  • 上海网站建设免费推百度销售是做什么
  • 网站扁平化设计软件外包公司好不好
  • 网站pc端和手机端分离怎么做seo快速排名软件app
  • 网站建设框架怎么做超级外链发布工具
  • 房山网站建设服务南宁百度推广代理商
  • 做问卷调查的网站挣钱seo神器
  • 一级a做爰片i网站百度高级搜索引擎入口
  • 网站什么模板做的企业网络营销策划方案范文
  • 蓝奏云注册网站网络营销是做什么
  • 网络用语建设是什么意思北京网站seo费用
  • 服装网站建设网怎么推广自己的微信号
  • 如何网上快速接网站开发订单外贸公司一般怎么找客户
  • 域名跳转到其他网站seo教程技术整站优化
  • 网站制作需要多少钱客服百度移动端模拟点击排名
  • 网站中文通用网址域名亚马逊seo什么意思
  • 如何设计微商城网站建设seo独立站
  • 数码网站建设图片石家庄百度推广优化排名
  • 吉林省城市建设学校网站网络广告策划案例
  • 做交友信息网站可行么百度云网盘网页版登录
  • 国家城乡建设规划部网站seo网站培训优化怎么做
  • 衢州品牌网站设计员工培训
  • 国内做新闻比较好的网站sem代运营费用
  • Ubuntu 安装 Kibana
  • (三)全栈(部署)
  • Spring Boot 注解详解:@RequestMapping 的多种用法
  • 如何判断一个数是 2 的幂 / 3 的幂 / 4 的幂 / n 的幂 位运算 总结和思考 每日一题 C++的题解与思路
  • 八、Linux Shell 脚本:变量与字符串
  • Javaweb - 14.1 - 前端工程化