网站长尾词挖掘创意广告
一.n元多项式环(7.9)
1.nnn元多项式的概念
(1)nnn元多项式的概念:
(2)相关概念:
2.nnn元多项式的运算
(1)nnn元多项式的加/乘法运算与nnn元多项式环:
(2)齐次多项式:
域FFF上所有nnn元mmm次齐次多项式构成的集合是1个线性空间
(3)运算与次数的关系:
定理1:在K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]中,2个非0多项式的乘积的首项等于它们的首项的乘积,从而2个非0多项式的乘积仍是非0多项式,即K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]是无零因子环
定理2:在K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]中degfg=degf+degg(7)\deg{fg}=\deg{f}+\deg{g}\qquad(7)degfg=degf+degg(7)
3.nnn元多项式的通用性质:
定理3:设KKK是1个数域,RRR是1个有单位元的交换环,并且RRR可以看成KKK的1个扩环(即RRR有1个子环R1R_1R1与KKK同构,且RRR的单位元是R1R_1R1的单位元),将KKK到R1R_1R1的同构映射记作τ\tauτ.设t1,t2...tnt_1,t_2...t_nt1,t2...tn是RRR的元素,令σt1,t2...tn:K[x1,x2...xn]→Rf(x1,x2...xn)=∑i1,i2...inai1,i2...inx1i1x2i2...xnin↦∑i1,i2...inτ(ai1,i2...in)t1i1t2i2...tninσ_{t_1,t_2...t_n}:\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad K[x_1,x_2...x_n]→R\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad\:\:\:\:\,\,\\f(x_1,x_2...x_n)=\displaystyle\sum_{i_1,i_2...i_n}a_{i_1,i_2...i_n}x_1^{i_1}x_2^{i_2}...x_n^{i_n}↦\displaystyle\sum_{i_1,i_2...i_n}τ(a_{i_1,i_2...i_n})t_1^{i_1}t_2^{i_2}...t_n^{i_n}σt1,t2...tn:K[x1,x2...xn]→Rf(x1,x2...xn)=i1,i2...in∑ai1,i2...inx1i1x2i2...xnin↦i1,i2...in∑τ(ai1,i2...in)t1i1t2i2...tnin则σt1,t2...tnσ_{t_1,t_2...t_n}σt1,t2...tn是K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]到RRR的1个映射,它使得σt1,t2...tn(xi)=ti(i=1,2...n)σ_{t_1,t_2...t_n}(x_i)=t_i\,(i=1,2...n)σt1,t2...tn(xi)=ti(i=1,2...n).把f(x1,x2...xn)f(x_1,x_2...x_n)f(x1,x2...xn)在此映射下的象记作f(t1,t2...tn)f(t_1,t_2...t_n)f(t1,t2...tn).如果f(x1,x2...xn)+g(x1,x2...xn)=h(x1,x2...xn)f(x1,x2...xn)g(x1,x2...xn)=p(x1,x2...xn)f(x_1,x_2...x_n)+g(x_1,x_2...x_n)=h(x_1,x_2...x_n)\\f(x_1,x_2...x_n)g(x_1,x_2...x_n)=p(x_1,x_2...x_n)f(x1,x2...xn)+g(x1,x2...xn)=h(x1,x2...xn)f(x1,x2...xn)g(x1,x2...xn)=p(x1,x2...xn)那么f(t1,t2...tn)+g(t1,t2...tn)=h(t1,t2...tn)f(t1,t2...tn)g(t1,t2...tn)=p(t1,t2...tn)f(t_1,t_2...t_n)+g(t_1,t_2...t_n)=h(t_1,t_2...t_n)\\f(t_1,t_2...t_n)g(t_1,t_2...t_n)=p(t_1,t_2...t_n)f(t1,t2...tn)+g(t1,t2...tn)=h(t1,t2...tn)f(t1,t2...tn)g(t1,t2...tn)=p(t1,t2...tn)即映射σt1,t2...tnσ_{t_1,t_2...t_n}σt1,t2...tn保持加法和乘法运算,称为**x1,x2...xnx_1,x_2...x_nx1,x2...xn用t1,t2...tnt_1,t_2...t_nt1,t2...tn带入**
4.nnn元多项式函数
(1)概念:
(2)非零多项式诱导的函数:
定理4:设h(x1,x2...xn)h(x_1,x_2...x_n)h(x1,x2...xn)是数域KKK上的nnn元非零多项式,则其诱导的nnn元多项式函数hhh不是零函数
(3)多项式相等的充要条件:
定理5:设KKK是数域,在K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]中,2个nnn元多项式f(x1,x2...xn),g(x1,x2...xn)f(x_1,x_2...x_n),g(x_1,x_2...x_n)f(x1,x2...xn),g(x1,x2...xn)相等当且仅当它们诱导的多项式函数f,gf,gf,g相等
(4)数域上的nnn元多项式函数环:
(5)代数簇:
5.数域KKK上nnn元多项式环的结构
(1)相关概念:
(2)nnn元多项式不可约的判定:
命题1:在K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]中,次数大于0的多项式p(x1,x2...xn)p(x_1,x_2...x_n)p(x1,x2...xn)不可约当且仅当其不能分解成2个次数较低的多项式的乘积
(3)nnn元多项式环中的唯一因式分解定理:
定理6(唯一因式分解定理):K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]中每个次数大于0的多项式f(x1,x2...xn)f(x_1,x_2...x_n)f(x1,x2...xn)都能唯一地分解成数域KKK上有限个不可约多项式的乘积
(4)nnn元多项式的标准分解式:
二.n元对称多项式(7.10)
1.nnn元对称多项式
(1)定义:
(2)性质:
(3)nnn元初等对称多项式:
2.数域KKK上nnn元对称多项式组成的集合WWW的结构
(1)WWW是nnn元多项式环的子环:
命题2:WWW是K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]的1个子环
命题3:设f1,f2...fn∈Wf_1,f_2...f_n∈Wf1,f2...fn∈W,则对∀g(x1,x2...xn)=∑i1,i2...inbi1i2...inx1i1x2i2...xnin∈K[x1,x2...xn]\forall g(x_1,x_2...x_n)=\displaystyle\sum_{i_1,i_2...i_n}b_{i_1i_2...i_n}x_1^{i_1}x_2^{i_2}...x_n^{i_n}∈K[x_1,x_2...x_n]∀g(x1,x2...xn)=i1,i2...in∑bi1i2...inx1i1x2i2...xnin∈K[x1,x2...xn],有g(f1,f2...fn)=∑i1,i2...inbi1i2...inf1i1f2i2...fnin∈Wg(f_1,f_2...f_n)=\displaystyle\sum_{i_1,i_2...i_n}b_{i_1i_2...i_n}f_1^{i_1}f_2^{i_2}...f_n^{i_n}∈Wg(f1,f2...fn)=i1,i2...in∑bi1i2...inf1i1f2i2...fnin∈W即对称多项式的多项式仍是对称多项式.特别地,有g(σ1,σ2...σn)∈Wg(σ_1,σ_2...σ_n)∈Wg(σ1,σ2...σn)∈W即初等对称多项式σ1,σ2...σnσ_1,σ_2...σ_nσ1,σ2...σn的多项式仍是对称多项式
(2)对称多项式基本定理:
定理7(对称多项式基本定理):对数域KKK上任一nnn元对称多项式f(x1,x2...xn)f(x_1,x_2...x_n)f(x1,x2...xn),都存在KKK上唯一一个nnn元多项式g(x1,x2...xn)g(x_1,x_2...x_n)g(x1,x2...xn),使得f(x1,x2...xn)=g(σ1,σ2...σn)f(x_1,x_2...x_n)=g(σ_1,σ_2...σ_n)f(x1,x2...xn)=g(σ1,σ2...σn)即KKK上任一nnn元对称多项式都可表示成初等对称多项式σ1,σ2...σnσ_1,σ_2...σ_nσ1,σ2...σn的多项式
3.数域KKK上一元多项式的判别式
(1)判别式的概念:
命题4:数域KKK上首项系数为1的一元多项式f(x)=xn+an−1xn−1+...+a1x+a0f(x)=x^n+a_{n-1}x^{n-1}+...+a_1x+a_0f(x)=xn+an−1xn−1+...+a1x+a0在复数域中有重根的充要条件是g(−an−1,an−2...(−1)na0)=0g(-a_{n-1},a_{n-2}...(-1)^na_0)=0g(−an−1,an−2...(−1)na0)=0
(2)求判别式:
(3)通过初等对称多项式表示幂和:
牛顿公式:在K[x1,x2...xn]K[x_1,x_2...x_n]K[x1,x2...xn]中,当1≤k≤n1≤k≤n1≤k≤n时,有sk−σ1sk−1+σ2sk−2+...+(−1)k−1σk−1s1+(−1)kkσk=0s_k-σ_1s_{k-1}+σ_2s_{k-2}+...+(-1)^{k-1}σ_{k-1}s_1+(-1)^kkσ_k=0sk−σ1sk−1+σ2sk−2+...+(−1)k−1σk−1s1+(−1)kkσk=0当k>nk>nk>n时,有sk−σ1sk−1+σ2sk−2+...+(−1)n−1σn−1sk−n+1+(−1)nσnsk−n=0s_k-σ_1s_{k-1}+σ_2s_{k-2}+...+(-1)^{n-1}σ_{n-1}s_{k-n+1}+(-1)^nσ_ns_{k-n}=0sk−σ1sk−1+σ2sk−2+...+(−1)n−1σn−1sk−n+1+(−1)nσnsk−n=0